Bạn cần đăng nhập để đánh giá tài liệu

Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để đồ thị hàm số có 5 điểm cực trị.

558

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 2) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.

Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để đồ thị hàm số có 5 điểm cực trị.

Bài 35: y=x33x2+m, với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để đồ thị hàm số có 5 điểm cực trị. Tổng tất cả các phần tử của tập S là.

Lời giải:  Ta có: y=x33x2+m=(x33x2+m)2

y'=(x33x2+m)(3x26x)(x33x2+m)2.

Để đồ thị hàm số đã cho có 5 điểm cực trị khi và chỉ khi phương trình: y' = 0 có 5 nghiệm phân biệt. Điều này tương đương với (x33x2+m)(3x26x)=0.  Đặt g(x)=(x33x2+m)=0  phải có 3 nghiệm phân biệt khác 0 và 2.

Ta có: x3+3x2=m,  tức là ta cần đi tìm giá trị của m để đường thẳng y = m cắt đồ thị hàm số y=f(x)=x3+3x2  tại 3 điểm phân biệt.

Do đó ta khảo sát hàm số f(x)=x3+3x2  thì ta có được:

4+m<0<m0<m<4

Vậy S={1;2;3}, tổng tất cả các giá trị của S là 6.

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá