Giải Toán 8 trang 78 Tập 1 (Chân trời sáng tạo)

283

Với giải SGK Toán 8 Chân trời sáng tạo trang 78 chi tiết trong Bài 4: Hình bình hành – Hình thoi giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải Toán 8 trang 78 Tập 1 (Chân trời sáng tạo)

Thực hành 3 trang 78 Toán 8 Tập 1: Cho hình thoi MNPQ có I là giao điểm của hai đường chéo.

a) Tính MP khi biết MN = 10 dm, IN = 6 dm.

b) Tính IMN^ khi biết MNP^=128°.   

Lời giải:

a)

Toán 8 Bài 4 (Chân trời sáng tạo): Hình bình hành – Hình thoi (ảnh 20)

Do MNPQ là hình thoi nên hai đường chéo MP và NQ vuông góc với nhau tại trung điểm của mỗi đường.

Áp dụng định lí Pythagore vào DMNI vuông tại I, ta có:

MN2 = MI2 + NI2

Suy ra MI=MN2NI2=10262=8 (dm).

Do I là trung điểm của MP nên MP = 2MI = 2.8 = 16 (dm).

Vậy MP = 16 dm.

b)

Toán 8 Bài 4 (Chân trời sáng tạo): Hình bình hành – Hình thoi (ảnh 21)

Vì MNPQ là hình thoi nên MQ // NP

Do đó MNP^+NMQ^=180°

Suy ra NMQ^=180°MNP^=180°128°=52°.

Do MNPQ là hình thoi nên MP và tia phân giác của góc NMQ.

Suy ra IMN^=12NMQ^=12.52°=26°.

Vậy IMN^=26°.

Vận dụng 4 trang 78 Toán 8 Tập 1: Tính độ dài cạnh của các khuy áo hình thoi có độ dài hai đường chéo lần lượt là 3,2 cm và 2,4 cm.

Toán 8 Bài 4 (Chân trời sáng tạo): Hình bình hành – Hình thoi (ảnh 22)

Lời giải:

Toán 8 Bài 4 (Chân trời sáng tạo): Hình bình hành – Hình thoi (ảnh 23)

Hình ảnh chiếc khuy áo được vẽ lại bởi hình thoi ABCD như hình vẽ trên.

Gọi O là giao điểm của hai đường chéo AC và BD.

Khi đó hai đường chéo AC và BD vuông góc với nhau tại trung điểm O của mỗi đường.

Suy ra OA = 12AC = 1,6 cm và OB = 12BD = 1,2 cm.

Áp dụng định lí Pythagore vào DOAB vuông tại O, ta có:

AB2 = OA2 + OB2

Suy ra AB=OA2+OB2=1,62+1,22=2 (cm).

Vậy độ dài cạnh của khuy áo là 2 cm.

Khám phá 6 trang 78 Toán 8 Tập 1: Cho ABCD là một hình bình hành. Giải thích tại sao tứ giác ABCD có bốn cạnh bằng nhau trong mỗi trường hợp sau:

Trường hợp 1: AB = AD.

Trường hợp 2: AC vuông góc với BD.

Trường hợp 3: AC là phân giác góc BAD.

Trường hợp 4: BD là phân giác góc ABC.

Lời giải:

Toán 8 Bài 4 (Chân trời sáng tạo): Hình bình hành – Hình thoi (ảnh 25)

• Trường hợp 1: AB = AD.

Toán 8 Bài 4 (Chân trời sáng tạo): Hình bình hành – Hình thoi (ảnh 26)

Vì ABCD là hình bình hành nên AD = BC và AB = CD.

Lại có AB = AD (giả thiết)

Do đó AB = AD = BC = CD.

• Trường hợp 2: AC vuông góc với BD.

Toán 8 Bài 4 (Chân trời sáng tạo): Hình bình hành – Hình thoi (ảnh 27)

Vì ABCD là hình bình hành nên AD = BC, AB = CD và hai đường chéo AC, BD cắt nhau tại trung điểm O của mỗi đường.

Xét DOAB và DOCB có:

AOB^=COB^=90°; OB là cạnh chung; OA = OC

Do đó DOAB = DOCB (hai cạnh góc vuông)

Suy ra AB = CB (hai cạnh tương ứng).

Mà AD = BC và AB = CD nên AB = CD = CB = DA.

• Trường hợp 3: AC là phân giác góc BAD.

Toán 8 Bài 4 (Chân trời sáng tạo): Hình bình hành – Hình thoi (ảnh 28)

Vì ABCD là hình bình hành nên AB // CD

Do đó BAC^=CDA^ (so le trong).

Mà BAC^=CAD^ (do AC là tia phân giác của góc BAD)

Suy ra CAD^=CDA^.

Tam giác ACD có CAD^=CDA^ nên là tam giác cân tại D

Suy ra DA = DC.

Lại có AB = CD và AD = BC (chứng minh trên).

Do đó AB = BC = CD = DA.

• Trường hợp 4: BD là phân giác góc ABC.

Chứng minh tương tự như trường hợp 3 ta cũng có AB = BC = CD = DA.

Đánh giá

0

0 đánh giá