Cho tam giác ABC, gọi M, N, P lần lượt là trung điểm các cạnh BC, CA, AB.

345

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 21) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.

Cho tam giác ABC, gọi M, N, P lần lượt là trung điểm các cạnh BC, CA, AB.

Câu 7: Cho tam giác ABC, gọi M, N, P lần lượt là trung điểm các cạnh BC, CA, AB. Số vectơ bằng vectơ MN có điểm đầu và điểm cuối trùng với một trong các điểm A, B, C, M, N, P là bao nhiêu vectơ?

Lời giải: Do M và N lần lượt là trung điểm của BC và AC nên MN là đường trung bình của tam giác ABC.

Suy ra MN//AB;  MN=12AB.           (1)

Lại có P là trung điểm của AB nên: AP=BP=12AB.           (2)

Từ (1) và (2) suy ra:  MN=AP=BP.

Vậy khi đó số vecto bằng MN  mà có điểm đầu và cuối trùng với các điểm trên là: BP;   PA.

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá