Với giải SGK Toán 11 Chân trời sáng tạo trang 54 chi tiết trong Bài 2: Cấp số cộng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải Toán 11 trang 54 Tập 1 (Chân trời sáng tạo)
Lời giải:
Ta có:
u2 – u1 = d;
u3 – u1 = 2d;
u4 – u1 = 3d;
...
un – u1 = (n – 1)d.
Thực hành 3 trang 54 Toán 11 Tập 1: Tìm số hạng tổng quát của các cấp số cộng sau:
a) Cấp số cộng (an) có a1 = 5 và d = – 5;
b) Cấp số cộng (bn) có b1 = 2 và b10 = 20.
Lời giải:
a) Cấp số cộng (an) có a1 = 5 và d = – 5
Số hạng tổng quát là:
an = a1 + (n – 1).d = 5 + (n – 1).(– 5) = 5 + – 5n + 5 = – 5n + 10.
b) Cấp số cộng (bn) có b1 = 2 và b10 = 20.
Số hạng tổng quát là: bn = b1 + (n – 1)d
Khi đó b10 = 2 + (10 – 1).d = 2 + 9d = 20
⇒ d = 2
Vậy số hạng tổng quát là: bn = 2 + (n – 1).2 = 2n.
Vận dụng 2 trang 54 Toán 11 Tập 1: Tìm số hạng tổng quát của cấp số cộng (cn) có c4 = 80 và c6 = 40.
Lời giải:
Ta có: c4 = c1 + 3d = 80 và c6 = c1 + 5d = 40. Khi đó ta có hệ phương trình:
.
Khi đó số hạng tổng quát của cấp số cộng trên là:
cn = 140 + (n – 1).(– 20) = – 20n +160.
Vậy số hạng tổng quát của cấp số cộng (cn) là: cn = – 20n + 160.
3. Tổng của n số hạng đầu tiên của cấp số cộng
Hoạt động khám phá 3 trang 54 Toán 11 Tập 1: Cho cấp số cộng (un) có công sai d.
a) Tính các tổng un + u1; u2 + un-1; u3 + un-2; ...; uk + un-k+1 theo u1, n và d.
b) Chứng tỏ rằng 2(u1 + u2 + u3 + ... + un) = n(u1 + un).
Lời giải:
a) Ta có: un = u1 + (n – 1)d, un-1 = u1 + (n – 1 – 1)d = u1 + (n – 2)d
Khi đó:
u1 + un = u1 + u1 + (n – 1)d = 2u1 + (n – 1)d;
u2 + un-1 = u1 + d + u1 + (n – 2)d = 2u1 + (n – 1)d;
u3 + un-2 = u1 + 2d + u1 + (n – 3)d = 2u1 + (n – 1)d;
...
uk + un-k+1 = u1 + (k – 1)d + u1 + (n – k + 1 – 1)d = 2u1 + (n – 1)d;
Vậy u1 + un = u2 + un-1 = u3 + un-2 = ... = uk + un-k+1.
b) Ta có: 2(u1 + u2 + u3 + ... + un)
= 2[(u1 + un) + (u2 + un-1) + (u3 + un-2) + ... + (uk + un-k+1)]
= 2[(u1 + un) + (u1 + un) + ... + (u1 + un)]
= = n(u1 + un) .
Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Vận dụng 2 trang 54 Toán 11 Tập 1: Tìm số hạng tổng quát của cấp số cộng (cn) có c4 = 80 và c6 = 40.
Thực hành 4 trang 55 Toán 11 Tập 1: a) Tính tổng 50 số tự nhiên chẵn đầu tiên.
Bài 1 trang 56 Toán 11 Tập 1: Chứng minh dãy số hữu hạn sau là cấp số cộng: 1; – 3; – 7; – 11; – 15.
Bài 3 trang 56 Toán 11 Tập 1: Cho cấp số cộng (un) có số hạng đầu u1 = – 3 và công sai d = 2.
Bài 5 trang 56 Toán 11 Tập 1: Tìm số hạng đầu và công sai của cấp số cộng (un)
Xem thêm lời giải sách giáo khoa Toán 11 Chân trời sáng tạo hay, chi tiết khác:
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.