Toán 8 (Chân trời sáng tạo) Bài 2: Đường trung bình của tam giác

355

Toptailieu.vn biên soạn và giới thiệu lời Giải Toán 8 Chân trời sáng tạo Bài 2: Đường trung bình của tam giác hay, chi tiết sẽ giúp học sinh dễ dàng trả lời câu hỏi SGK Toán 8 Bài 2 từ đó học tốt môn Toán 8.

Toán 8 (Chân trời sáng tạo) Bài 2: Đường trung bình của tam giác

Giải Toán 8 trang 52 Tập 2

Khởi động trang 52 Toán 8 Tập 2: Giữa hai điểm B và C có một hồ nước (xem hình bên). Biết DE = 45 m. Làm thế nào để tính được khoảng cách giữa hai điểm B và C?

Khởi động trang 52 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Xét tam giác ABC, ta có:

ADAB=AEAC=12

Theo định lí Thalès đảo, ta có DE // BC.

Suy ra DEBC=ADAB=12, vậy BC = 2DE = 90 m.

Sau khi học xong bài này:

Ta có: D, E là trung điểm của AB và AC nên DE là đường trung bình của tam giác ABC

suy ra DE = 12BC vậy BC = 2DE = 90 m.

1. Đường trung bình của tam giác

Khám phá 1 trang 52 Toán 8 Tập 2: Cho tam giác ABC, vẽ đường thẳng d đi qua trung điểm M của cạnh AB, song song với cạnh BC và cắt AC tại N (Hình 1). Hãy chứng minh N là trung điểm của AC.

Khám phá 1 trang 52 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Xét tam giác ABC có MN // BC, theo định lí Thalès, ta có:

AMAB=ANAC=12

Suy ra N là trung điểm của AC.

Thực hành 1 trang 52 Toán 8 Tập 2: Tìm độ dài đoạn thẳng NQ trong Hình 4.

Thực hành 1 trang 52 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Ta có: OPQ^=OMN^ mà hai góc này ở vị trí đồng vị nên MN // PQ.

Xét tam giác OPQ ta có:

MN // PQ

M là trung điểm OP

Suy ra MN là đường trung bình tam giác OPQ.

Do đó là trung điểm OQ ⇒ NQ = ON = 4.

Giải Toán 8 trang 53 Tập 2

Vận dụng 1 trang 53 Toán 8 Tập 2: Trong Hình 5, chứng minh MN là đường trung bình của tam giác ABC.

Vận dụng 1 trang 53 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Ta có: MN ⊥ AB, AC ⊥ AB nên MN // AC.

Xét tam giác ABC có:

MN // AC

M là trung điểm AB

Suy ra MN là đường trung bình tam giác ABC.

2. Tính chất của đường trung bình

Khám phá 2 trang 53 Toán 8 Tập 2: Cho M, N lần lượt là trung điểm của hai cạnh AB và AC của tam giác ABC.

a) Tính các tỉ số AMAB, ANAC;

b) Chứng minh MN // BC;

c) Chứng minh MNBC=12

Khám phá 2 trang 53 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

Lời giải:

a) Vì M là trung điểm AB suy ra AMAB=12

Tương tự, ANAC=12

b) Xét tam giác ABC có AMAB=ANAC

Theo định lí Thalès đảo, ta có: MN // BC.

c) Xét tam giác ABC có MN // BC.

Áp dụng hệ quả định lí Thalès, ta có:

MNBC=AMAB=12

Thực hành 2 trang 53 Toán 8 Tập 2: Trong Hình 8, cho biết JK = 10 cm, DE = 6,5 cm, EL = 3,7 cm. Tính DJ, EF, DF, KL.

Thực hành 2 trang 53 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

Lời giải:

D là trung điểm của JK suy ra DJ=12JK=12.10=5(cm)

E là trung điểm của JL suy ra JL = 2EL = 2.3,7 = 7,4 (cm)

Trong tam giác JKL có:

D là trung điểm của JK

E là trung điểm của JL

Suy ra DE là đường trung bình của tam giác JKL.

Do đó KL = 2DE = 2.6,5 = 13 (cm).

Vận dụng 2 trang 53 Toán 8 Tập 2: Hãy tính khoảng cách BC trong phần Hoạt động khởi động (trang 52).

Lời giải:

Xét tam giác ABC ta có:

ADAB=AEAC=12

Theo định lí Thalès đảo ta có DE // BC.

Suy ra DEBC=ADAB=12, vậy BC = 2DE = 90 m.

Ta có: D là trung điểm của AB

E là trung điểm của AC

Suy ra DE là đường trung bình của tam giác ABC.

DE=12BC

Vậy BC = 2DE = 90 m.

Bài tập

Bài 1 trang 53 Toán 8 Tập 2: Cho MN là đường trung bình của mỗi tam giác ABC trong Hình 9. Hãy tìm giá trị x trong mỗi hình.

Bài 1 trang 53 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

Lời giải:

a) Xét tam giác ABC có MN là đường trung bình ta có:

BC = 2MN

x = 12.

b) Xét tam giác ABC có MN là đường trung bình ta có:

BC = 2MN

2x + 3 = 14

x = 112.

c) Xét tam giác ABC có MN là đường trung bình ta có:

BC = 2MN

58 = 2(5x − 1)

58 = 10x – 2

x = 6

Giải Toán 8 trang 54 Tập 2

Bài 2 trang 54 Toán 8 Tập 2: Tính độ dài đoạn PQ (Hình 10).

Bài 2 trang 54 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Xét tam giác ABC có:

AP = PB = 8 cm

AQ = QC = 7 cm

Khi đó, PQ là đường trung bình tam giác ABC.

Do đó PQ=12BC=12.9=4,5 (cm).

Bài 3 trang 54 Toán 8 Tập 2: Cho biết cạnh mỗi ô vuông bằng 1 cm. Tính độ dài các đoạn PQ, PR, RQ, AB, BC, CA trong Hình 11.

Bài 3 trang 54 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Ta có: AB=22+42=25;

AC=22+42=25 ;

BC=22+62=210.

Xét tam giác ABC có:

P là trung điểm của BC

Q lần lượt là trung điểm của AC

Do đó PQ là đường trung bình tam giác ABC.

Khi đó PQ=12AB=12.25=5

Tương tự: PR=12AC=12.25=5;

RQ=12BC=12.210=10

Vậy PQ=5PR=5RQ=10AB=25AC=25 BC=210.

Bài 4 trang 54 Toán 8 Tập 2: Cho hình thang ABCD (AB // CD) có E và F lần lượt là trung điểm hai cạnh bên AD và BC. Gọi K là giao điểm của AF và DC (Hình 12).

a) Tam giác FBA và tam giác FCK có bằng nhau không? Vì sao?

b) Chứng minh EF // CD // AB.

c) Chứng minh EF=AB+CD2

Bài 4 trang 54 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

Lời giải:

a) Xét tam giác FBA và FCK ta có:

F1^=F2^ (hai góc đối đỉnh)

FB = FC (giả thiết)

FBA^=FCK^ (AB // CD, hai góc so le trong)

Do đó ΔFBA = ΔFCK (g.c.g)

b) ΔFBA = ΔFCK suy ra FA = FK

Xét tam giác ADK có:

EA = ED

FA = FK

Do đó, EF là đường trng bình tam giác ABC.

Suy ra EF // DK

Mà AB // CD nên EF // CD // AB.

c) EF là đường trung bình tam giác ADK.

Suy ra EF=12DK=12(CD+CK)

Mà CK = BA (do ΔFBA = ΔFCK)

Do đó EF=AB+CD2

Bài 5 trang 54 Toán 8 Tập 2: Cho tam giác ABC nhọn. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC. Kẻ đường cao AH. Chứng minh rằng tứ giác MNPH là hình thang cân.

Lời giải:

Bài 5 trang 54 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

Xét tam giác ABC ta có:

M là trung điểm của AB (gt);

N là trung điểm của AC (gt);

Do đó MN là đường trung bình của tam giác ABC nên MN // BC.

Suy ra tứ giác MNPH là hình thang.

Xét tam giác ABC ta có:

M là trung điểm của AB (gt);

P là trung điểm của BC;

Do đó MP là đường trung bình của tam giác ABC nên MN=12AC

Vì ΔACH vuông tại H có HN là trung tuyến (N là trung điểm của AC) nên NH=12AC

Mà MP=12AC (cmt) nên NH = MP.

Hình thang MNPH (MN // PH) có MP = NH nên là hình thang cân.

Bài 6 trang 54 Toán 8 Tập 2: Một mái nhà được vẽ lại như Hình 13. Tính độ dài x trong hình mái nhà.

Bài 6 trang 54 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Xét tam giác ABH có:

AD = BD

BE = EH

Do đó DE là đường trung bình tam giác ABH nên DE=12AH

Khi đó x=12.2,8=1,4(m)

Bài 7 trang 54 Toán 8 Tập 2: Ảnh chụp từ Google Maps của một trường học được cho trong Hình 14. Hãy tính chiều dài cạnh DE, cho biết BC = 232 m và B, C lần lượt là trung điểm AD và AE.

Bài 7 trang 54 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Xét tam giác ADE có:

B là trung điểm AD

C là trung điểm AE

Do đó BC là đường trung bình của tam giác ADE.

Khi đó DE = 2BC = 2.232 = 464 (m).

Xem thêm Lời giải bài tập Toán 8 Chân trời sáng tạo hay, chi tiết khác:

Bài 1: Định lí Thalès trong tam giác

Bài 3: Tính chất đường phân giác của tam giác

Bài tập cuối chương 7

Bài 1: Hai tam giác đồng dạng

Bài 2: Các trường hợp đồng dạng của hai tam giác

Đánh giá

0

0 đánh giá