Toptailieu biên soạn và giới thiệu Phương pháp giải Diện tích hình chữ nhật (50 bài tập minh họa) gồm các dạng bài tập có phương pháp giải chi tiết và các bài tập điển hình từ cơ bản đến nâng cao giúp học sinh biết cách làm các dạng toán.
Phương pháp giải Diện tích hình chữ nhật (50 bài tập minh họa)
I. Lý thuyết
1. Khái niệm diện tích đa giác
- Số đo phần mặt phẳng bị giới hạn bởi đa giác gọi là diện tích đa gác.
- Mỗi đa giác chỉ có một số đo diện tích nhất định. Số đo đó là một số dương
- Một số tính chất của diện tích đa giác:
+ Hai tam giác bằng nhau thì có diện tích bằng nhau.
+ Nếu một đa giác được chia thành những đa giác không có điểm trong chung thì diện tích của đa giác bằng tổng diện tích các đa giác đã chia.
+ Nếu chọn một hình vuông có độ dài cạnh là 1cm; 1dm; 1m làm đơn vị đo diện tích thì đơn vị diện tích của hình vuông đó tương ứng là 1 ; 1 ; 1
2. Công thức tính diện tích hình chữ nhật
Diện tích hình chữ nhật bằng tích hai kích thước của nó (tích chiều dài và chiều rộng)
Cho hình chữ nhật ABCD có DC = a; BC = b
Diện tích hình chữ nhật: S = a.b (đơn vị diện tích)
3. Diện tích hình vuông
Diện tích hình vuông bằng bình phương độ dài cạnh của nó.
Hình vuông ABCD có độ dài cạnh bằng a
Diện tích hình vuông: S = (đơn vị diện tích)
4. Diện tích tam giác vuông
Diện tích tam giác vuông bằng nửa tích hai cạnh góc vuông
Cho tam giác ABC vuông tại A có AB = c; AC = b
Diện tích tam giác vuông ABC: S = (đơn vị diện tích)
II. Dạng bài tập
Dạng 1: Tính diện tích đa giác
Phương pháp giải: Sử dụng các khái niệm diện tích của đa giác và cách chia nhỏ một đa giác.
Ví dụ: Cho hình bình hành ABCD, M là trung điểm của cạnh BC. Tia AM cắt tia DC tại điểm E. Chứng minh:
Lời giải:
Vì M là trung điểm của BC nên BM = MC
Vì AB // CD nên AB // CE (hai góc so le trong)
Xét hai tam giác ABM và tam giác ECM có:
BM = CM (chứng minh trên)
(chứng minh trên)
(hai góc đối đỉnh)
Do đó (g – c – g)
(1)
Ta có:
(2)
(3)
Từ (1), (2) và (3) (điều phải chứng minh)
Dạng 2: Bài toán liên quan đến diện tích hình chữ nhật
Phương pháp giải: Sử dụng công thức tính diện tích hình chữ nhật
S = a.b (đơn vị diện tích)
với a, b là chiều dài và chiều rộng
Công thức tính chu vi hình chữ nhật
C = (a + b). 2 (đơn vị độ dài)
Ví dụ 1: Một hình chữ nhật có chu vi là 50cm và diện tích là 150 . Tính chiều dài, chiều rộng của hình chữ nhật.
Lời giải:
Nửa chu vi hình chữ nhật là:
Gọi chiều dài của hình chữ nhật là x ( 0 < x < 25)
Khi đó chiều rộng của hình chữ nhật là 25 – x
Chiều dài lớn hơn chiều rộng x > 25 – x
x > 12, 5
Vậy điều kiện của x là 12,5 < x < 25
Diện tích hình chữ nhật là x(25 – x)
Mà diện tích hình chữ nhật là 150 nên ta có:
Với chiều dài hình chữ nhật là 15cm chiều rộng hình chữ nhật là : 25 – 15 = 10cm
Vậy chiều dài hình chữ nhật là 15cm; chiều rộng hình chữ nhật là 10cm
Ví dụ 2: Hình chữ nhật có diện tích là 6000 . Nếu chiều dài tăng thêm 20cm và chiều rộng giảm 5cm thì diện tích tăng 600 . Tính chu vi hình chữ nhật ban đầu.
Lời giải:
Gọi chiều dài ban đầu của hình chữ nhật là x, chiều rộng ban đầu của hình chữ nhật là y (0 < y < x)
Diện tích ban đầu của hình chữ nhật là xy
Chiều dài hình chữ nhật sau khi tăng thêm 20cm là x + 20 (cm)
Chiều rộng hình chữ nhật sau khi giảm 5cm là y – 5 (cm)
Diện tích hình chữ nhật mới là: (x + 20)(y – 5) = xy + 20y – 5x – 100
Vì diện tích mới tăng thêm 600 ta có:
xy + 20y – 5x – 100 – xy = 600
-5x + 20y – 100 = 600
20y – 5x = 600 + 100
20y – 5x = 700
4y – x = 140
x = 4y – 140
Mà xy = 6000 nên ta có:
(4y – 140)y = 6000
Với y = 60 cm cm
Chu vi hình chữ nhật ban đầu là:
C = (a + b). 2 = (100 + 60).2 = 320cm
Dạng 3: Bài toán liên quan đến diện tích hình vuông
Phương pháp giải: Sử dụng công thức tính diện tích hình vuông
Hình vuông có cạnh bằng a: diện tích hình vuông: S = (đơn vị diện tích)
Chu vi hình vuông có cạnh bằng a: c = 4.a (đơn vị độ dài)
Ví dụ 1: Một hình vuông có cạnh bằng a. Khi độ dài mỗi cạnh tăng 5% thì diện tích hình vuông tăng bao nhiêu %?
Lời giải:
Diện tích hình vuông có cạnh bằng a là: (đơn vị diện tích)
Khi độ dài mỗi cạnh 5% thì độ dài cạnh hình vuông mới là: a + a.5% = a + 0,05a = 1,05a (đơn vị độ dài)
Diện tích hình vuông mới có cạnh 1,05a là: (đơn vị diện tích)
Tỉ số % diện tích hình vuông mới so với hình vuông ban đầu là:
1,1025 : .100% = 110,25%
% diện tích tăng thêm là:
110,25% - 100% = 10,25%
Vậy diện tích tăng thêm là 10,25%.
Ví dụ 2: Một hình chữ nhật có diện tích là 192 . Biết tỉ lệ của chiều rộng và chiều dài là 1:3.
Tính diện tích hình vuông có cùng chu vi với diện tích hình chữ nhật trên.
Lời giải:
Gọi chiều rộng hình chữ nhật là x (cm) thì chiều dài của hình chữ nhật là 3x (cm).
Diện tích hình chữ nhật là : 3x.x = 192
(cm)
Chiều rộng của hình chữ nhật là 8cm
Chiều dài của hình chữ nhật là 3.8 = 24cm
Chu vi hình chữ nhật là:
(8 + 24). 2 = 64cm
Cạnh hình vuông có cùng chu vi với hình chữ nhật là
64 : 4 = 16cm
Diện tích hình vuông có cùng chu vi với hình chữ nhật là:
Vậy diện tích hình vuông là
Dạng 4: Các bài toán có liên quan đến diện tích tam giác vuông
Phương pháp giải: Sử dụng định lý Py – ta – go và công thức thức tính diện tích tam giác vuông.
Tam giác ABC vuông tại A .
Diện tích tam giác ABC: S =
Ví dụ 1: Cho tam giác ABC vuông tại A có AB = 3cm; BC = 5cm. Tính diện tích tam giác ABC.
Lời giải:
Xét tam giác ABC vuông tại A ta có:
(Định lý Py – ta – go)
Vậy diện tích tam giác ABC là .
Ví dụ 2: Tính diện tích tam giác vuông có cạnh huyền bằng 13 và tổng hai cạnh góc vuông là 17.
Lời giải:
Gọi cạnh góc vuông thứ nhất là x cm (0 < x < 17).
Vì tổng hai cạnh góc vuông là 17 nên cạnh góc vuông thứ hai là 17 – x cm
Giả sử x là cạnh góc vuông lớn trong hai cạnh góc vuông
Áp ụng định lý Py – ta – go cho tam giác vuông ta có:
Với x = 12 thì độ dài hai cạnh góc vuông lần lượt là 12cm và 5cm
Diện tích tam giác vuông cần tính là:
.
III. Bài tập vận dụng
Bài 1: Cho hình bình hành ABCD. Từ A và C kẻ AH và CK vuông góc với BD. Chứng minh:
a)
b)
Bài 2: Cho hình chữ nhật có độ dài đường chéo là 40cm và các cạnh tỉ lệ với 3 và 4. Tính chu vi và diện tích hình chữ nhật đó.
Bài 3: Một thửa ruộng hình chữ nhật. Nếu tăng chiều dài thêm 20m và chiều rộng giảm đi 5m thì diện tích tăng 600 . Nếu giảm chiều dài đi 10m và tăng chiều rộng lên 10m thì diện tích tăng 300 . Tính diện tích hình chữ nhật ban đầu.
Bài 4: Một hình chữ nhật ABCD có AD = 7cm, BD = 25cm. Gọi O là giao điểm 2 đường chéo. Gọi M, N, P, Q theo thứ tự là trung điểm của OA, OB, OC, OD. Tính diện tích tứ giác MNPQ.
Bài 5: Cho tam giác ABC vuông tại A. Dựng phía ngoài tam giác hình vuông ABFG, ACKI, BCDE. Chứng minh:
a)
b)
Bài 6: Nếu tăng độ dài mỗi cạnh hình vuông lên 3 lần thì diện tích hình vuông tăng lên mấy lần?
Bài 7: Một hình thang cân có hai đường chéo vuông góc với nhau. Độ dài đường chéo là 6cm. Tính diện tích tứ giác có các đỉnh là trung điểm các cạnh của hình thang cân đó.
Bài 8: Cho hình bình hành ABCD. Các tia phân giác góc A và C cắt đường chéo BD tại E và F. Chứng minh:
a)
b)
Bài 9: Cho tam giác ABC vuông tại A. Có AB = 6; BC = 10. Tính diện tích tam giác ABC.
Bài 10: Trong các hình chữ nhật có cùng diện tích là 100 hình nào có chu vi nhỏ nhất.
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.