II. Thông hiểu
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y = 5}\\{x - y = 1}\end{array}} \right.\) có nghiệm là
A. \(\left( {x;y} \right) = \left( {3; - 2} \right).\)
B. \(\left( {x;y} \right) = \left( {3;2} \right).\)
C. \(\left( {x;y} \right) = \left( { - 3;2} \right).\)
D. \(\left( {x;y} \right) = \left( { - 3; - 2} \right).\)
Đáp án đúng là: B
Ta có: \(\left\{ {\begin{array}{*{20}{c}}{x + y = 5\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)}\\{x - y = 1\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)}\end{array}} \right.\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra
\(\left( {x + y} \right) + \left( {x + y} \right) = 5 + 1\)
\(x + y + x - y = 6\)
\(2x = 6\)
\(x = 3.\)
Thay \(x = 3\) vào phương trình \(\left( 1 \right)\) ta được \(3 + y = 5\) suy ra \(y = 2.\)
Vậy hệ phương trình có nghiệm duy nhất \(\left( {3;2} \right).\)
15 câu trắc nghiệm Toán 9 Chân trời sáng tạo Bài 3. Giải hệ hai phương trình bậc nhất hai ẩn có đáp án
Cho hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{2x - y = 1\,\,\,\left( 1 \right)}\\{3x + 2y = 5\,\,\left( 2 \right)}\end{array}} \right..\)Khi giải hệ phương trình bằng phương pháp thế, ta thế \(x\) ở phương trình \(\left( 1 \right)\) vào phương trình \(\left( 2 \right)\), khi đó ta được phương trình một ẩn là:
Cho hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y = 2\,\,\,\,\,\left( 1 \right)}\\{2x + y = 3\,\,\,\left( 2 \right)}\end{array}} \right..\) Khi giải hệ phương trình bằng phương pháp cộng đại số để được phương trình bậc nhất một ẩn, cách đơn giản nhất là:
Biết hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{ax + 3y = 1}\\{x + by = - 2}\end{array}} \right.\) nhận cặp số \(\left( { - 2;3} \right)\) là một nghiệm. Khi đó giá trị của \(a,\,b\)là
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + 2y = 5}\\{2x + 3y = 8}\end{array}} \right.\)có nghiệm là
Gọi \(\left( {x;y} \right)\) là nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{2x - 3y = 1}\\{x + 4y = 6}\end{array}} \right..\) Giá trị biểu thức \(A = x + y\) là
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{3\left( {x + 1} \right) - 2\left( {y - 1} \right) = 4}\\{4\left( {x - 2} \right) + 3\left( {y + 1} \right) = 5}\end{array}} \right.\) có nghiệm là
Với giá trị nào của \(a;\,b\)để đồ thị hàm số \(y = {\rm{ax}} + b\) đi qua hai điểm \(A\left( {2;3} \right)\) và \(B\left( {1; - 4} \right)\) là
Nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x - 2y = 1}\\{3x - 2y = 3}\end{array}} \right.\) là cặp \(\left( {x;y} \right).\) Khẳng định nào sau đây sai?
Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{\frac{2}{x} + \frac{1}{y} = 3}\\{\frac{6}{x} - \frac{7}{y} = - 1}\end{array}} \right.\)có nghiệm là
Gọi \(\left( {x;y} \right)\) là nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{\left( {3x + 2} \right)\left( {2y - 3} \right) = 6xy}\\{\left( {4x + 5} \right)\left( {y - 5} \right) = 4xy}\end{array}} \right..\) Giá trị biểu thức \(A = x.y\) là
I. Nhận biết
Có mấy bước để giải hệ hai phương trình bậc nhất hai ẩn bằng phương pháp cộng đại số?
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.