Phương pháp giải Công thức về tính chất của tỉ lệ nghịch (50 bài tập minh họa)

223

Toptailieu.vn biên soạn và giới thiệu Phương pháp giải Công thức về tính chất của tỉ lệ nghịch (50 bài tập minh họa) hay, chi tiết nhất, từ cơ bản đến nâng cao giúp học sinh nắm vững kiến thức về hỗn số, từ đó học tốt môn Toán 7.

Phương pháp giải Công thức về tính chất của tỉ lệ nghịch (50 bài tập minh họa)

I. Lý thuyết

1. Định nghĩa

- Nếu đại lượng y liên hệ với đại lượng x theo công thức y=ax hay xy = a với a là một hằng số khác 0 thì ta nói đại lượng y tỉ lệ nghịch với đại lượng x theo hệ số tỉ lệ a.

Chú ý:

Khi tỉ lệ nghịch với x thì cũng tỉ lệ nghịch với và ta nói hai đại lượng đó tỉ lệ nghịch với nhau.

- Đại lượng y tỉ lệ nghịch với đại lượng theo hệ số tỉ lệ a thì đại lượng x cũng tỉ lệ nghịch với đại lượng y theo hệ số tỉ lệ là a.

2. Tính chất

Nếu hai đại lượng tỉ lệ nghịch với nhau thì:

- Tích hai giá trị của chúng luôn không đổi (bằng hệ số tỉ lệ):

x1.y1=x2.y2=...=xn.yn=a(với a là hệ số tỉ lệ).

- Tỉ số hai giá trị bất kỳ của đại lượng này bằng nghịch đảo tỉ số hai giá trị tương ứng của đại lượng kia:

x1x2=y2y1;x1x3=y3y1;...

II. Các ví dụ:

Ví dụ 1: Cho x, y là hai đại lượng tỉ lệ nghịch với nhau và khi x = 4 thì y = 8, hãy:

a) Tìm hệ số tỉ lệ của y đối với x.

b) Biểu diễn y theo x.

c) Tính giá trị của y khi x = 8; x = -2.

Lời giải:

a) Vì x, y là hai đại lượng tỉ lệ nghịch nên x.y = a

4.8 = a

a = 32

Vậy hệ số tỉ lệ của y đối với x là 32.

b) Ta có:

y=axmà a = 32 nên y=32x

c) Khi x = 8 y=328=4

Khi x = -2 y=322=16

Vậy x = 8 thì y = 4, x = -2 thì y = -16.

Ví dụ 2: Cho x và y là hai đại lượng tỉ lệ nghịch. Gọi x1;x2là hai giá trị của x thì y1y2là hai giá trị tương ứng của y. Biết rằng x12x2=8và y1= 5; y2=15.

a) Tính x1;x2

b) Biểu diễn y theo x.

Lời giải:

a) Vì x, y là hai đại lượng tỉ lệ nghịch nên x1.y1=x2.y2 x1.5=x2.15

x115=x25

Áp dụng dãy tỉ số bằng nhau ta có:

Công thức về tính chất của tỉ lệ nghịch hay nhất - Toán lớp 7 (ảnh 1)

b) Vì x; y tỉ lệ nghịch với nhau nên xy = a

x.y=24.5=120a=120

Biểu diễn y theo x: y=120x.

Ví dụ 3: Cho 4 người cùng làm cỏ trên một cánh đồng hết 6 giờ. Hỏi 8 người (với cùng năng suất như thế) làm cỏ cánh đồng đó hết bao nhiêu thời gian.

Lời giải:

Gọi thời gian để 8 người làm cỏ xong cánh đồng là x (giờ) với x > 0.

Do số người và thời gian làm việc là các đại lượng tỉ lệ nghịch nên

6x=848x=6.4x=24:8x=24:8x=3

Vậy 8 người thì sẽ làm xong cỏ trên cánh đồng trong 3h.

Ví dụ 4: Chia số 520 thành 3 phần tỉ lệ nghịch với 2; 3; 4. Tìm ba phần đó.

Lời giải:

Gọi ba phần cần tìm là x; y; z x + y + z = 520

Do x; y; z tỉ lệ nghịch với 2; 3; 4 nên 2x = 3y = 4z

2x12=3y12=4z12

x6=y4=z3 

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

Công thức về tính chất của tỉ lệ nghịch hay nhất - Toán lớp 7 (ảnh 1)

Vậy ba phần đó lần lượt là 240; 160; 120.

Xem thêm các dạng Toán 7 hay, chọn lọc khác:

Mặt phẳng tọa độ lớp 7 và cách giải các dạng bài tập

Đồ thị hàm số y = ax lớp 7 và cách giải các dạng bài tập

Công thức về tính chất của tỉ lệ thuận hay nhất

Công thức tìm hệ số tỉ lệ thuận, hệ số tỉ lệ nghịch

Cách vẽ đồ thị hàm số y = ax

Đánh giá

0

0 đánh giá