Phương pháp giải Phép đối xứng tâm (50 bài tập minh họa) HAY NHẤT 2024

350

Toptailieu.vn biên soạn và giới thiệu Phương pháp giải Phép đối xứng tâm (50 bài tập minh họa) HAY NHẤT 2024 gồm đầy đủ các phần: Lý thuyết, phương pháp giải, bài tập minh họa có lời giải chi tiết giúp học sinh làm tốt bài tập Toán 11 từ đó học tốt môn Toán. Mời các bạn đón xem:

Phương pháp giải Phép đối xứng tâm (50 bài tập minh họa) HAY NHẤT 2024

I. Lý thuyết ngắn gọn

1. Cho điểm I phép biến hình biến điểm I thành chính nó và biến mỗi điểm M khác I thành điểm M′ sao cho I là trung điểm của MM′ được gọi là phép đối xứng tâm I, kí hiệu DI

DI(M)=M'IM+IM'=0

Nếu DI((H))=(H) thì I được gọi là tâm đối xứng của hình H

2. Trong mặt phẳng Oxy cho I (a; b), M(x; y). Gọi M’ (x’; y’) là ảnh của M qua phép đối xứng tâm I thì x'=2axy'=2by

3. Tính chất

- Phép đối xứng tâm bảo toàn khoảng cách giữa hai điểm bất kỳ

- Phép đối xứng tâm biến 3 điểm thẳng hàng thành 3 điểm thẳng hàng và không thay đổi thứ tự của chúng

- Phép đối xứng tâm I biến đường thẳng thành đường thẳng song song hoặc trùng với nó; biến đa giác thành đa giác bằng đa giác đã cho; biến đường tròn thành đường tròn có bán kính bằng bán kính đường tròn đã cho

II. Các dạng toán phép đối xứng tâm

Dạng 1: Xác định ảnh của một hình qua phép đối xứng tâm

Phương pháp giải: Sử dụng biểu thức tọa độ và các tính chất của phép đối xứng tâm

Ví dụ 1: Cho điểm I(2; 2) và đường thẳng d: x + 5y + 1 = 0. Tìm ảnh của d qua phép đối xứng tâm I

Lời giải

Lấy điểm Mx;ydx+5y+1=0(1)

Gọi M'x';y'=DIM thì x'=4xy'=4yx=4x'y=4y'

Thay vào (1) được (4x')+5(4y')+1=0

x'+5y'25=0

Vậy ảnh của d là đường thẳng d’: x + 5y – 25 = 0

Ví dụ 2: Trong mặt phẳng Oxy cho điểm A (-1; 3) và đường thẳng d có phương trình: x - 2y + 3 = 0 . Tìm ảnh của A và d qua phép đối xứng tâm O ( với O là gốc tọa độ)

Lời giải

Gọi A’ (x’; y’) là ảnh của A qua phép đối xứng tâm O (0; 0). Theo công thức tọa độ của phép đối xứng ta có

x'=0xy'=0yx=x'y=y'x'=1y'=3A'(1;3)

Gọi M (x; y) là một điểm bất kỳ thuộc d và M’ (x’; y’) là một điểm bất kỳ thuộc d’ là ảnh của d qua phép đối xứng tâm O. Theo công thức tọa độ của phép đối xứng ta có:

x'=0xy'=0yx=x'y=y'(x')2(y')+3=0x'2y'3=0

Do đó d’ có phương trình x - 2y – 3 = 0

Dạng 2: Xác định tâm đối xứng khi biết ảnh và tạo ảnh

Ví dụ 3: Trong mặt phẳng Oxy cho đường thẳng d: x - 2y + 2 = 0 và d’: x - 2y -8 = 0. Tìm phép đối xứng tâm biến d thành d’ và biến trục Ox thành chính nó

Lời giải

Gọi M (x; y) thuộc d; M’ (x’; y’) thuộc d’, M’ là ảnh của M qua phép đối xứng tâm I. Giả sử tâm đối xứng là I (a; b), thì theo công thức có:

x'=2axy'=2by(2ax)2(2by)8=0x2y+4b2a+8=0

Để trục Ox thành chính nó thì tâm đối xứng phải có dạng: I (a; 0) tức b=0

Suy ra: 4b2a+8=2b=0a=3b=0I(3;0)

Ví dụ 4: Cho đường thẳng d: x - 2y + 2 = 0 và d': x - 2y – 8 = 0. Tìm phép đối xứng tâm biến d thành d' và biến trục Oy thành chính nó

Lời giải

Giao của hai đường thẳng d : x - 2y + 2 = 0 và d ': x - 2y - 8 = 0 với trục Oy là A (0; 1), A' (0; - 4)

Theo giả thiết biến d thành d' và biến trục Oy thành chính nó thì A biến thành A' nên tâm đối xứng là I trung điểm của AA' là I0;32

Dạng 3: Tìm tâm đối xứng của một hình

Phương pháp giải: Điểm I được gọi là tâm đối xứng của hình H nếu phép đối xứng tâm I biến hình H thành chính nó. Khi đó ta nói H là hình có tâm đối xứng.

Ví dụ 5: Tìm tâm đối xứng biến điểm A (4; 3) thành điểm A' (6; 1).

Lời giải

I (a; b) là trung điểm của AA'a=4+62=5b=3+12=2

Vậy tâm đối xứng cần tìm là I (5; 2)

Ví dụ 6: Tìm tâm đối xứng của đường cong (C) có phương trình: y=x33x2+3

Lời giải

Lấy điểm M(x;y)(C)y=x33x2+3  (1)

Gọi I (a; b) là tâm đối xứng của (C) và M’ (x’; y’) là ảnh của M qua phép đối xứng tâm I

Ta có: x'=2axy'=2byx=2ax'y=2by'

Thay vào (1) được: 2by'=(2ax')33(2ax')2+3 (2)

y'=x'33x'2+3+(66a)x'2+(12a212a)x'8a3+12a2+2b6

Mặt khác M'C nên y'=x'33x'2+3

Do đó (2) 

Phép đối xứng tâm và cách giải các dạng bài tập – Toán lớp 11 (ảnh 1)

Vậy I (1; 1) là tâm đối xứng của (C)

Dạng 4: Sử dụng phép đối xứng tâm để giải các bài toán dựng hình

Phương pháp giải: Xem điểm cần dựng là giao của một đường có sẵn và ảnh của một đường khác qua phép quay DI nào đó

Ví dụ 7: Cho hai đường thẳng d, d’ và điểm I. Tìm điểm A trên d và điểm B trên d’ sao cho I là trung điểm của đoạn thẳng AB

Lời giải

-Dựng đường thẳng d1 là ảnh của d qua phép đối xứng tâm I

-Dựng giao điểm B của d’ và d1

-Dựng A là giao điểm của đường thẳng BI và đường thẳng d

Số nghiệm hình là số giao điểm của đường thẳng d1 và d’

- Nếu d’ và d1 song song thì bài toán vô nghiệm

-Nếu d’ và d1 cắt nhau thì bài toán có 1 nghiệm

-Nếu d’ và d1 trùng nhau thì bài toán có vô số nghiệm

Phép đối xứng tâm và cách giải các dạng bài tập – Toán lớp 11 (ảnh 1)

Ví dụ 8: Cho hai đường thẳng d1, d2 và hai điểm A, G không thuộc d1, d2. Hãy dựng tam giác ABC có trọng tâm G và hai đỉnh B, C lần lượt thuộc d1 và d2

Lời giải

Giả sử đã dựng được tam giác ABC thỏa mãn yêu cầu bài toán

Gọi I là trung điểm của BC thì DI(C)=B

Cd2 nên Bd'2 với d’2 là ảnh của d2 qua phép đối xứng tâm I

Ta lại có Bd1B=d1d'2

Cách dựng:

-Dựng điểm I sao cho AI=32AG

-Dựng đường thẳng d’2 ảnh của d2 qua DI

-Gọi B=d1d'2

-Dựng điểm C=DI(B)

Tam giác ABC là tam giác phải dựng

Phép đối xứng tâm và cách giải các dạng bài tập – Toán lớp 11 (ảnh 1)

Dạng 5: Sử dụng phép đối xứng tâm để giải bài toán tập hợp điểm

Phương pháp giải: Để tìm quỹ tích (tập hợp điểm), nếu có phép đối xứng tâm O biến điểm M thành M' và (C) là tập hợp điểm của M thì ảnh (C’) qua tâm đối xứng tâm O là tập hợp của M'

Ví dụ 9: Cho trên đường tròn (O)  hai điểm cố định B, C và một điểm A thay đổi. Gọi H là trực tâm của tam giác ABC và H’ là điểm sao cho tứ giác BHCH’ là hình bình hành. Chứng minh rằng khi A thay đổi thì H’ luôn nằm trên đường tròn (O). Tìm tập hợp của H

Lời giải

Phép đối xứng tâm và cách giải các dạng bài tập – Toán lớp 11 (ảnh 1)

Gọi A’ là điểm xuyên tâm đối của A trên (O). Ta có:

A’B AB (ABA’ là tam giác có cạnh huyền là đường kính)

CH AB (do CH là đường cao)

Nên AB // CH (1)

Tương tự ta chứng minh được A’C // BH (2)

(1) và (2) BHCA’ là hình bình hành

Lấy H’ trung với A’. Vậy BHCH’ là hình bình hành và H’ luôn nằm trên đường tròn.

Trong hình bình hành BHCH’, có HH’ và BC là hai đường chéo nnen HH’ nhận trung điểm I của BC cố định làm trung điểm.

Do đó H là điểm đối xứng với H’ qua I.

Mà H’ (O) nên H một đường tròn đối xứng với (O) qua I

Ví dụ 10: Một hình bình hành ABCD có hai đỉnh A, C cố định, còn đỉnh B thay đổi trên đường thẳng d. Tìm quỹ tích đỉnh D

Lời giải

Phép đối xứng tâm và cách giải các dạng bài tập – Toán lớp 11 (ảnh 1)

Vì ABCD là hình bình hành có hai đỉnh A, C cố định nên tâm O là trung điểm của đường chéo AC

Suy ra: O cố định

Mà tâm O là trung điểm đường chéo BD. Do đó phép đối xứng tâm O biến B thành D

Mà B chạy trên đường thẳng d nên điểm D chạy trên đường thẳng d' ảnh của d qua phép đối xứng tâm O

Ngược lại với mọi điểm D thuộc đường thẳng d' ta luôn tìm được điểm B thuộc d sao cho O là trung điểm của BD

Vậy quỹ tích của các điểm D là đường thẳng d' ảnh của d qua phép đối xứng tâm O

III. Bài tập áp dụng

Bài 1: Trong mặt phẳng hệ tọa độ Oxy, tìm tọa độ điểm M’ là ảnh của điểm M (2; 1) qua phép đối xứng tâm I (3; -2)

Bài 2: Một hình bình hành ABCD có hai đỉnh A, C cố định, còn đỉnh B thay đổi trên đường tròn (O; R) . Tìm quỹ tích của đỉnh D

Bài 3: Tìm tâm đối xứng của các hình sau đây: tam giác đều, hình bình hành, lục giác đều, đường tròn, hình gồm hai đường tròn bằng nhau

Bài 4: Cho đường tròn (O) và dây cung AB cố định, M là một điểm di động trên (O), M không trùng với A, B. Hai đường tròn (O1), (O2) cùng đi qua M và tiếp xúc với AB tại A và B. Gọi N là giao điểm thứ hai của (O1) và (O2). Tìm tập hợp điểm N khi M di động

Bài 5: Tìm tâm đối xứng biến điểm A (5; 0) thành điểm A' (8; 8)

Bài 6: Cho hình bình hành MNPQ nội tiếp hình bình hành ABCD (4 đỉnh nằm trên bốn cạnh). Chứng minh hai hình bình hành có cùng tâm đối xứng

Bài 7: Xác định ảnh qua phép đối xứng tâm I (4; -7) của:

a. Điểm A (3; -2) của đường thẳng d: 3x - 6y + 1 = 0

b. Đường tròn x2+y24x2y4=0

Bài 8: Tìm ảnh qua phép đối xứng tâm I (-3; 5) của:

a. Điểm A (3; -4)

b. Đường thẳng d: 2x – y +1 = 0

Bài 9: Cho phép đối xứng tâm I (p; 3). Tìm ảnh của đồ thị hàm số (C): y = 2sin2x - 5

Bài 10: Giả sử phép đối xứng tâm Do biến đường thẳng d thành đường thẳng d'. Chứng minh nếu d không đi qua tâm đối xứng O thì d' song song với d, O cách đều d và d'

Bài 11: Trong mặt phẳng Oxy cho đường thẳng d có phương trình 2x - 6y + 5 = 0 điểm I(2;-4). Phép đối xứng tâm I biến d thành d’ có phương trình

Bài 12: Cho hình bình hành ABCD tâm O. Gọi E, F lần lượt là trung điểm của các cạnh BC và AD. Phép đối xứng tâm O biến thành?

Bài 13: Trong mặt phẳng Oxy cho đường tròn (C) có phương trình:

(x - 3)2 + (y - 1)2 = 4. Phép đối xứng có tâm O là gốc tọa độ biến (C) thành (C’) có phương trình?

Bài 14: Trong mặt phẳng Oxy cho parabol (P) có phương trình: y = x2 - 3x + 1. Phép đối xứng tâm I(4; -3) biến P thành (P’) có phương trình?

Bài 15: Trong mặt phẳng Oxy cho đường thẳng d có phương trình x - 2y + 20 = 0; đường thẳng d’ có phương trình x - 2y - 8 = 0. Tìm tọa độ điểm I sao cho phép đối xứng tâm I biến d thành d’ đồng thời biến trục Oy thành chính nó?

Bài 16: Trong mặt phẳng Oxy cho hình (H) gồm đường thẳng d có phương trình : 3x - 5y + 7 = 0; đường thẳng d’ có phương trình 3x - 5y + 12 = 0. Một lần đối xứng của (H) là?

Bài 17: Trong mặt phẳng Oxy cho đường tròn (C) có phương trình (x - 2)2 + (y + 4)2 = 9 và đường tròn (C’) có phương trình (x - 3)2 + (y + 3)2 = 9. Phép đối xứng tâm K biến (C) thành (C’). tọa độ của K là?

Bài 18: Trong mặt phẳng Oxy cho đường tròn (C) có phương trình x2 + y2 + 2x - 6y + 6 = 0; điểm I(1;2). Phép đối xứng tâm I biến (C) thành (C’) có phương trình:

Xem các Phương pháp giải bài tập hay, chi tiết khác: 

Phép đối xứng trục và cách giải các dạng bài tập

Phép quay và cách giải các dạng bài tập

Phép vị tự và cách giải các dạng bài tập

Phép đồng dạng và cách giải các dạng bài tập

Công thức phép tịnh tiến

Đánh giá

0

0 đánh giá