Toptailieu.vn biên soạn và giới thiệu Lý thuyết Phép nhân đa thức một biến (Kết nối tri thức) Toán 7 hay, ngắn gọn và bài tập tự luyện có lời giải chi tiết sẽ giúp học sinh nắm vững nội dung kiến thức từ đó dễ dàng làm các bài tập Toán 7.
Lý thuyết Phép nhân đa thức một biến (Kết nối tri thức) Toán 7
Lý thuyết
1. Nhân đơn thức với đa thức
Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức vời từng hạng tử của đa thức rồi cộng các tích với nhau.
Ví dụ:
Muốn tính ta làm như sau:
=
= – 3x5 + x3 – 12x2.
2. Nhân đa thức với đa thức
Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
Ví dụ:
Muốn tính (x + 2).(3x2 – 4x + 5) ta làm như sau:
(x + 2).(3x2 – 4x + 5) = x.(3x2 – 4x + 5) + 2.(3x2 – 4x + 5)
= x.3x2 + x.( – 4x) + x.5 + 2.3x2 +2.( – 4x) + 2.5
= 3x3 – 4x2 + 5x + 6x2 – 8x + 10
= 3x3 + (– 4x2 + 6x2) + (5x – 8x) + 10
= 3x3 + 2x2 – 3x + 10.
Chú ý:
• Ta có thể trình bày phép nhân một đa thức với một đa thức bằng cách đặt tính.
Khi trình bày theo cách này ta cần:
+ Nhân lần lượt mỗi hạng tử ở dòng dưới với đa thức ở dòng trên và viết kết quả trong một dòng riêng.
+ Viết các dòng sao cho các hạng tử cùng bậc thẳng cột với nhau (để thực hiện phép cộng theo cột).
+ Khi nhân các hạng tử ở dòng dưới với đa thức ở dòng trên, ta nên nhân các hạng tử theo thứ tự từ bậc thấp đến bậc cao.
Chẳng hạn: Đặt tính nhân (x + 3).(2x2 – 3x – 5), ta làm như sau:
• Phép nhân đa thức cũng có các tính chất:
+ Giao hoán: A.B = B.A.
+ Kết hợp: (A.B).C = A.(B.C).
+ Phân phối đối với phép cộng: A.(B + C) = A.B + A.C.
Bài 1. Thực hiện các phép nhân sau:
a) 5x2.(2x3 – 4x2 + 3x – 1);
b) (– 1,2x2).(5x4 – 2x3 + 3x2 – 2,5).
Hướng dẫn giải
a) 5x2.(2x3 – 4x2 + 3x – 1)
= 5x2.2x3 + 5x2.( – 4x2) + 5x2.3x + 5x2.( – 1)
= 10x5 – 20x4 + 15x3 – 5x2
b) (– 1,2x2).(5x4 – 2x3 + 3x2 – 2,5)
= (– 1,2x2).5x4 + (– 1,2x2).( – 2x3) + (– 1,2x2).( 3x2) + (– 1,2x2).( – 2,5)
= – 6x6 + 2,4x5 – 3,6x4 + 3x2
Bài 2. Thực hiện các phép nhân sau:
a) (x2 – 3x).(x2 – 2x – 8);
b) (0,2x2 + x).(x2 – 3x + 7).
Hướng dẫn giải
a) (x2 – 3x).(x2 – 2x – 8)
= x2. (x2 – 2x – 8) – 3x. (x2 – 2x – 8)
= x2.x2 + x2.(– 2x) + x2.(– 8) – 3x.x2 – 3x.(– 2x) – 3x.( – 8)
= x4 – 2x3 – 8x2 – 3x3 + 6x2 + 24x
= x4 – (2x3 + 3x3) + (– 8x2 + 6x2) + 24x
= x4 – 5x3 – 2x2 + 24x.
b) (0,2x2 + x).(x2 – 3x + 7)
= 0,2x2. (x2 – 3x + 7) + x. (x2 – 3x + 7)
= 0,2x2.x2 + 0,2x2.( – 3x) + 0,2x2.7 + x.x2 + x.( – 3x) + x.7
= 0,2x4 – 0,6x3 + 1,4x2 + x3 – 3x2 + 7x
= 0,2x4 + (– 0,6x3 + x3) + (1,4x2 – 3x2) + 7x
= 0,2x4 + 0,4x3 – 1,6x2 + 7x.
Bài 3. Tìm x, biết rằng:
a) (x – 7)(2x3 – x2 + 1) + (x – 7)x2(1 – 2x) = 2;
b) (2x + 1)(2x – 3) – (4x + 1)(x + 2) = 8.
Hướng dẫn giải
a) (x – 7)(2x3 – x2 + 1) + (x – 7)x2(1 – 2x) = 2
(x – 7)[(2x3 – x2 + 1) + x2(1 – 2x)] = 2
(x – 7)[2x3 – x2 + 1 + x2 – 2x3] = 2
(x – 7)[(2x3 – 2x3) + (– x2 + x2) + 1] = 2
(x – 7).1 = 2
x – 7 = 2
x = 2 + 7
x = 9
Vậy x = 9.
b) (2x + 1)(2x – 3) – (4x + 1)(x + 2) = 8
2x(2x – 3) + 1.(2x – 3) – [4x(x + 2) + 1.(x + 2)] = 8
4x2 – 6x + 2x – 3 – [4x2 + 8x + x + 2] = 8
4x2 – 6x + 2x – 3 – 4x2 – 8x – x – 2 = 8
(4x2 – 4x2) + (– 6x + 2x – 8x – x) – (3 + 2) = 8
– 13x – 5 = 8
– 13x = 8 + 5
– 13x = 13
x = 13 : (– 13)
x = – 1
Vậy x = – 1.
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.