Toptailieu biên soạn và giới thiệu giải Sách bài tập Toán 11 Bài 23: Đường thẳng vuông góc với mặt phẳng sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm các bài tập từ đó nâng cao kiến thức và biết cách vận dụng phương pháp giải vào các bài tập trong SBT Toán 11 Bài 23.
SBT Toán 11 (Kết nối tri thức) Bài 23: Đường thẳng vuông góc với mặt phẳng
Bài 7.6 trang 28 SBT Toán 11 Tập 2: Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC) và đáy là tam giác ABC vuông tại B. Kẻ AM vuông góc với SB tại M và AN vuông góc với SC tại N. Chứng minh rằng:
a) BC (SAB);
b) AM (SBC);
c) SC (AMN).
Lời giải:
a) Vì SA (ABC) nên SA BC mà AB BC (do tam giác ABC vuông tại B). Do đó BC (SAB).
b) Vì BC (SAB) nên BC AM, mà AM SB (giả thiết). Do đó AM (SBC).
c) Vì AM (SBC) nên AM SC, mà AN SC (giả thiết). Do đó SC (AMN).
Bài 7.7 trang 28 SBT Toán 11 Tập 2: Cho tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc với nhau. Gọi H là chân đường vuông góc hạ từ O đến mặt phẳng (ABC). Chứng minh rằng:
a) BC (OAH);
b) H là trực tâm của tam giác ABC;
c) .
Lời giải:
a) Vì OA OB, OA OC nên OA (OBC). Suy ra OA BC.
Mà OH (ABC) nên OH BC. Do đó BC (OAH).
b) Vì BC (OAH) nên BC AH, do đó AH là đường cao của tam giác ABC. (1)
Có OH (ABC) nên OH AC.
Có OB OA, OC OB nên OB (OAC) nên OB AC mà OH AC, từ đó suy ra AC (OBH), suy ra CA BH, do đó BH là đường cao của tam giác ABC. (2)
Từ (1) và (2) suy ra H là giao hai đường cao của tam giác ABC.
Do đó H là trực tâm của tam giác ABC.
c) Gọi K là giao điểm của AH với BC.
Vì OA (OBC) nên OA OK .
Xét tam giác OAK vuông tại O, có OH là đường cao nên .
Vì AK BC mà OA BC nên BC (OAK), suy ra OK BC.
Xét tam giác OBC vuông tại O, có OK là đường cao nên .
Do đó .
Bài 7.8 trang 28 SBT Toán 11 Tập 2: Cho tứ diện ABCD có AB = AC và DB = DC. Chứng minh rằng AD BC.
Lời giải:
Gọi M là trung điểm của BC.
Xét tam giác ABC có AB = AC và AM là trung tuyến nên AM là đường cao.
Do đó AM BC. (1)
Xét tam giác BCD có DC = DB và DM là trung tuyến nên DM là đường cao.
Do đó DM BC. (2)
Từ (1) và (2) có: BC (ADM). Suy ra BC AD.
Bài 7.9 trang 28 SBT Toán 11 Tập 2: Cho hình lăng trụ tam giác ABC.A'B'C' có AA' vuông góc với mặt phẳng (ABC) và đáy là tam giác ABC vuông tại B. Chứng minh rằng:
a) BB' (A'B'C');
b) B'C' (ABB'A').
Lời giải:
a) Vì AA' // BB'; AA' (ABC) và (ABC) // (A'B'C') nên BB' (A'B'C').
b) Vì BC AB (do tam giác ABC vuông tại B).
Vì AA' // BB'; AA' (ABC) nên BB' (ABC), suy ra BC BB' mà BC AB nên BC (ABB'A').
Lại có BC // B'C' nên B'C' (ABB'A').
Bài 7.10 trang 28 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Chứng minh rằng:
a) SO (ABCD);
b) AC (SBD) và BD (SAC).
Lời giải:
a)
Vì ABCD là hình thoi, O là giao điểm của AC và BD nên O là trung điểm của AC, BD.
Xét tam giác SAC có SA = SC, SO là trung tuyến nên SO là đường cao hay SO AC.
Xét tam giác SBD có SB = SD, SO là trung tuyến nên SO là đường cao hay SO BD.
Do đó SO (ABCD).
b) Do ABCD là hình thoi nên AC BD. (1)
Mà SO (ABCD) nên AC SO (2) và BD SO (3).
Từ (1) và (2), suy ra AC (SBD).
Từ (1) và (3), suy ra BD (SAC).
Bài 7.11 trang 28 SBT Toán 11 Tập 2: Cho hình chóp S.ABC có SA (ABC), tam giác ABC nhọn. Gọi H, K lần lượt là trực tâm của tam giác ABC và SBC. Chứng minh rằng:
a) BC (SAH) và các đường thẳng AH, BC, SK đồng quy;
b) SB (CHK) và HK (SBC).
Lời giải:
a) Vì H là trực tâm tam giác ABC nên BC AH,
mà SA (ABC) nên SA BC. Do đó BC (SAH).
Gọi M là giao điểm của AH và BC, ta có BC (SAM) nên BC SM.
Mặt khác, K là trực tâm của tam giác SBC nên SM đi qua K.
Do đó AH, BC, SK đồng quy.
b) Vì SA (ABC) nên SA CH, mà CH AB, suy ra CH (SAB).
Do đó CH SB.
Lại có SB CK nên SB (CHK).
Xét tam giác SBC, K là trực tâm nên BK SC.
Vì SA (ABC) nên SA BH mà BH CA nên BH (SAC), suy ra BH SC.
Vì BK SC và BH SC nên SC (BHK), suy ra SC HK.
Mà SB HK (vì SB (CHK)). Do đó HK (SBC).
Bài 7.12 trang 28 SBT Toán 11 Tập 2: Một cây cột được dựng trên một sàn phẳng. Người ta thả dây dọi và ngắm thấy cột song song với dây dọi. Hỏi có thể khẳng định rằng cây cột vuông góc với sàn hay không? Vì sao?
Lời giải:
Vì dây dọi song song với cây cột và dây dọi vuông góc với mặt phẳng sàn nên cây cột vuông góc với mặt phẳng sàn.
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.