Lý thuyết Tính chất ba đường cao của tam giác (Cánh Diều) Toán 7

Toptailieu.vn biên soạn và giới thiệu Lý thuyết Tính chất ba đường cao của tam giác (Cánh Diều) Toán 7 hay, ngắn gọn và bài tập tự luyện có lời giải chi tiết sẽ giúp học sinh nắm vững nội dung kiến thức từ đó dễ dàng làm các bài tập Toán 7.

Lý thuyết Tính chất ba đường cao của tam giác (Cánh Diều) Toán 7

A. Lý thuyết

1. Đường cao của tam giác

– Trong một tam giác, đoạn vuông góc kẻ từ một đỉnh đến đường thẳng chứa cạnh đối diện gọi là một đường cao của tam giác đó.

Tính chất ba đường cao của tam giác (Lý thuyết + Bài tập toán lớp 7) – Cánh diều (ảnh 1)

Trong hình vẽ trên, đoạn thẳng AM là một đường cao của tam giác ABC. Đôi khi, ta cũng gọi đường thẳng AM là một đường cao của tam giác ABC.

Ví dụ: Quan sát hình vẽ dưới đây và xác định các đường cao của tam giác ABC (nếu có):

Tính chất ba đường cao của tam giác (Lý thuyết + Bài tập toán lớp 7) – Cánh diều (ảnh 1)

Hướng dẫn giải

Ta có A là đỉnh của ∆ABC mà AE không vuông góc với BC nên đoạn thẳng AE không là đường cao của ∆ABC.

Ta có B là đỉnh của ∆ABC và BH ⊥ AC tại H nên đoạn thẳng BH là đường cao của ∆ABC.

Ta lại có C là đỉnh của ∆ABC và CK ⊥ AB tại K nên đoạn thẳng CK là đường cao của ∆ABC.

Chú ý:

+ Mỗi tam giác có ba đường cao.

+ Đường cao của tam giác có thể nằm trong, trên cạnh hoặc nằm ngoài tam giác.

2. Tính chất ba đường cao trong tam giác

– Trong một tam giác, ba đường cao cùng đi qua một điểm. Điểm đó được gọi là trực tâm của tam giác.

Nhận xét: Để xác định trực tâm của một tam giác, ta chỉ cần vẽ hai đường cao bất kì và xác định giao điểm của hai đường đó.

Ví dụ: Cho ∆ABC có stack text BAC end text with hat on top equals 60 degree và hai đường cao AE, BF cắt nhau tại H. Kẻ CH cắt AB tại M. Tính stack text ACM end text with hat on top.

Hướng dẫn giải

Tính chất ba đường cao của tam giác (Lý thuyết + Bài tập toán lớp 7) – Cánh diều (ảnh 1)

Theo bài ta có hai đường cao AE và BF cắt nhau tại H nên H là trực tâm của ∆ABC.

Suy ra CH ⊥ AB tại M

Do đó stack text AMC end text with hat on top equals 90 degreesuy ra ∆AMC vuông tại M

Xét ∆AMC vuông tại M có stack text MAC end text with hat on top plus stack text ACM end text with hat on top equals 90 degree (tổng hai góc nhọn trong tam giác vuông bằng 90°).

Hay stack text ACM end text with hat on top equals 90 degree minus stack text MAC end text with hat on top equals 90 degree minus stack text BAC end text with hat on top equals 90 degree minus 60 degree equals 30 degree

Vậy stack text ACM end text with hat on top equals 30 degree.

B. Bài tập tự luyện

B.1 Bài tập tự luận

Bài 1. Cho ∆ABC cân tại A, vẽ BD ⊥ AC và CE ⊥ AB. Gọi H là giao điểm của BD và CE. Chứng minh:

a) AH ⊥ BC.

b) AH là đường trung trực của ED.

Hướng dẫn giải

Tính chất ba đường cao của tam giác (Lý thuyết + Bài tập toán lớp 7) – Cánh diều (ảnh 1)

a) Theo bài ta có BD ⊥ AC và CE ⊥ AB do đó BD, CE là đường cao của ∆ABC.

Mà H là giao điểm của BD và CE.

Vì vậy H là trực tâm của ∆ABC.

Suy ra AH ⊥ BC (tính chất đường cao trong tam giác)

Vậy AH ⊥ BC.

b) • Xét ∆ACE và ∆ABD có:

stack text AEC end text with hat on top equals stack text ADB end text with hat on top equals 90 degree(vì BD ⊥ AC tại D và CE ⊥ AB tại E),

stack text BAC end text with hat on top là góc chung,

AC = AB (vì ∆ABC cân tại A).

Do đó ∆ACE = ∆ABD (cạnh huyền – góc nhọn).

Suy ra AE = AD (hai cạnh tương ứng)

Suy ra A nằm trên đường trung trực của ED   (4)

• Ta có ∆ACE = ∆ABD (chứng minh trên)

Suy ra stack text ACE end text with hat on top equals stack text ABD end text with hat on top (hai góc tương ứng)

Hay stack text DCH end text with hat on top equals stack text EBH end text with hat on top

Ta lại có AB = AE + BE  (1)

AC = AD + DC  (2)

Mà AB = AC; AE = AD (chứng minh trên)  (3)

Từ (1), (2) và (3) suy ra BE = CD.

Xét ∆BEH và ∆CDH có:

stack text BEH end text with hat on top equals stack text CDH end text with hat on top equals 90 degree,

BE = CD (chứng minh trên),

stack text EBH end text with hat on top equals stack text DCH end text with hat on top (chứng minh trên).

Do đó ∆BEH = ∆CDH (cạnh góc vuông – góc nhọn kề)

Suy ra HE = HD (hai cạnh tương ứng)

Vì HE = HD nên H nằm trên đường trung trực của ED  (5)

Từ (4) và (5) suy ra A, H nằm trên đường trung trực của ED.

Hay AH là đường trung trực của ED.

Vậy AH là đường trung trực của ED.

Bài 2. Cho ∆ABC cân tại A có AD ⊥ BC tại D. Qua D kẻ DI ⊥ AB tại I biết rằng stack text BDI end text with hat on top equals 35 degree. Gọi H là trực tâm của ∆ABC. Tính stack text AHC end text with hat on top.

Hướng dẫn giải

Tính chất ba đường cao của tam giác (Lý thuyết + Bài tập toán lớp 7) – Cánh diều (ảnh 1)

 

 

Kẻ CH cắt AB tại K.

Vì H là trực tâm của ∆ABC nên CH ⊥ AB hay CK ⊥ AB tại K.

Ta lại có DI ⊥ AB tại I.

Do đó DI //CK.

Suy ra stack text BDI end text with hat on top equals stack text DCH end text with hat on top equals 35 degree (hai góc ở vị trí đồng vị)

Xét ∆DHC vuông tại D có stack text DHC end text with hat on top plus stack text DCH end text with hat on top equals 90 degree(tổng hai góc nhọn trong tam giác vuông bằng 90°)

Hay stack text DHC end text with hat on top text  + 35 end text degree equals 90 degree 

Suy ra stack text DHC end text with hat on top equals 90 degree minus 35 degree equals 55 degree.

Ta lại có stack text DHC end text with hat on top plus stack text AHC end text with hat on top equals 180 degree (hai góc kề bù)

Hay 55 degree plus stack text AHC end text with hat on top equals 180 degree

Suy ra stack text AHC end text with hat on top equals 180 degree minus 55 degree equals 135 degree

Vậy stack text AHC end text with hat on top equals 135 degree.

Bài 3. Cho ∆ABC có stack text A end text with hat on top equals 60 degree và BD, CE lần lượt là các đường cao hạ từ B, C sao cho BD = CE. Gọi H là giao điểm của BD và CE.

a) Chứng minh: ∆ABC đều.

b) Tính stack text BHC end text with hat on top.

Hướng dẫn giải

Tính chất ba đường cao của tam giác (Lý thuyết + Bài tập toán lớp 7) – Cánh diều (ảnh 1)

a) Xét ∆BDC và ∆CEB có:

stack text BDC end text with hat on top equals stack text CEB end text with hat on top equals 90 degree (vì BD, CE là đường cao ∆ABC),

BD = CE (giả thiết),

BC là cạnh chung.

Do đó ∆BDC = ∆CEB (cạnh huyền – cạnh góc vuông)

Suy ra stack text BCD end text with hat on top equals stack text CBE end text with hat on top (hai góc tương ứng)

Hay stack text ABC end text with hat on top equals stack text ACB end text with hat on top.

Xét ∆ABC có stack text ABC end text with hat on top equals stack text ACB end text with hat on top suy ra ∆ABC cân tại A.

∆ABC cân tại A có stack text BAC end text with hat on top equals 60 degree (giả thiết)

Do đó ∆ABC là tam giác đều.

Vậy ∆ABC là tam giác đều.

b) Xét DACE vuông tại E có stack text EAC end text with hat on top plus stack text ACE end text with hat on top equals 90 degree(tổng hai góc nhọn trong tam giác vuông bằng 90°)  (1)

Xét DDHC vuông tại D có stack text DHC end text with hat on top plus stack text HCD end text with hat on top equals 90 degree(tổng hai góc nhọn trong tam giác vuông bằng 90°)

Hay stack text DHC end text with hat on top plus stack text ACE end text with hat on top equals 90 degree  (2)

Từ (1) và (2) suy ra stack text EAC end text with hat on top equals stack text DHC end text with hat on top equals 60 degree.

Ta có stack text BHC end text with hat on top plus stack text DHC end text with hat on top equals 180 degree(hai góc kề bù)

Suy ra stack text BHC end text with hat on top equals 180 degree minus stack text DHC end text with hat on top equals 180 degree minus 60 degree equals 120 degree

Vậy stack text BHC end text with hat on top equals 120 degree.

B.2 Bài tập trắc nghiệm

Câu 1. Cho ∆ABC có ba góc nhọn (AB < AC), đường cao AH. Lấy D là điểm thuộc đoạn HC, vẽ DE ⊥ AC (E ∈ AC). Gọi K là giao điểm của AH và DE. Khẳng định nào sau đây đúng?

A. AD // KC;                   

B. AD trùng KC;             

C. AD cắt KC nhưng không vuông góc với KC;               

D. AD ⊥ KC.

Hướng dẫn giải

Đáp án đúng là: D

Tính chất ba đường cao của tam giác (Lý thuyết + Bài tập toán lớp 7) – Cánh diều (ảnh 1)

∆AKC có CH, KE là hai đường cao.

Mà CH cắt KE tại D.

Suy ra D là trực tâm của ∆AKC.

Do đó AD ⊥ KC.

Vậy ta chọn phương án D.

Câu 2. Cho ∆ABC có 92 comma 61 space c m cubed, AD vuông góc với BC tại D, BE vuông góc với AC tại E. Gọi F là giao điểm của đường thẳng AD và BE. Khẳng định nào sau đây đúng?

A. AB ⊥ FC;                   

B. AB // FC;         

C. AB cắt FC nhưng không vuông góc với FC;                

D. AB trùng FC.

Hướng dẫn giải

Đáp án đúng là: A

Tính chất ba đường cao của tam giác (Lý thuyết + Bài tập toán lớp 7) – Cánh diều (ảnh 1)

Xét ∆FBC có CE và FD là hai đường cao.

Mà CE, FD cắt nhau tại A.

Suy ra A là trực tâm của ∆FBC.

Do đó BA ⊥ FC.

Vậy ta chọn đáp án A.

Câu 3. Cho ∆ABC vuông tại A, đường trung tuyến BM. Qua M vẽ một đường thẳng vuông góc với BC, cắt đường thẳng AB tại D. Vẽ điểm E sao cho M là trung điểm DE. Cho các khẳng định sau:

(I) M là trực tâm của DBCD.

(II) AE // DC.

(III) AE ⊥ BM;               

Số khẳng định đúng là:

A. 0;

B. 1;

C. 2;

D. 3.

Hướng dẫn giải

Đáp án đúng là: D

Tính chất ba đường cao của tam giác (Lý thuyết + Bài tập toán lớp 7) – Cánh diều (ảnh 1)

• Xét ∆DBC có CA, DM là hai đường cao.

Mà M là giao điểm của CA và DM.

Do đó M là trực tâm của ∆DBC.

Suy ra BM ⊥ CD   (1).

Do đó (I) đúng.

• Xét ∆MEA và ∆MDC, có:

MA = MC (do BM là đường trung tuyến của ∆ABC),

AME with hat on top equals CMD with hat on top (hai góc đối đỉnh),

ME = MD (do M là trung điểm DE).

Do đó ∆MEA = ∆MDC (c.g.c)

Suy ra MAE with hat on top equals MCD with hat on top (cặp góc tương ứng).

Mà hai góc này ở vị trí so le trong.

Nên AE // CD  (2).

Do đó (II) đúng.

Từ (1), (2), ta suy ra BM ⊥ AE.

Do đó (III) đúng.

Vậy ta chọn phương án D.

Xem thêm các bài lý thuyết Toán 7 Cánh Diều hay, chi tiết khác:

Lý thuyết Bài 10. Tính chất ba đường trung tuyến của tam giác

Lý thuyết Bài 11. Tính chất ba đường phân giác của tam giác

Lý thuyết Bài 12. Tính chất ba đường trung trực của tam giác

Lý thuyết Ôn tập chương 7

Tài liệu có 12 trang. Để xem toàn bộ tài liệu, vui lòng tải xuống
Đánh giá

0

0 đánh giá

Tài liệu cùng môn học

Lý thuyết Ôn tập chương 7 (Cánh Diều) Toán 7 Giang Tiêu đề (copy ở trên xuống) - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
797 47 14
Lý thuyết Tính chất ba đường trung trực của tam giác (Cánh Diều) Toán 7 Giang Lý thuyết Tính chất ba đường trung trực của tam giác (Cánh Diều) Toán 7 - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
764 12 9
Lý thuyết Tính chất ba đường phân giác của tam giác (Cánh Diều) Toán 7 Giang Lý thuyết Tính chất ba đường phân giác của tam giác (Cánh Diều) Toán 7 - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
733 13 8
Tải xuống