Toptailieu.vn biên soạn và giới thiệu giải Sách bài tập Toán 11 Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm các bài tập từ đó nâng cao kiến thức và biết cách vận dụng phương pháp giải vào các bài tập trong SBT Toán 11 Bài 6.
SBT Toán 11 (Cánh diều) Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối
B. 6a3;
C. 2a3;
D. a3.
Lời giải:
Đáp án đúng là: B
Thể tích của khối lăng trụ được tính theo công thức: V = Sh, trong đó S là diện tích đáy, h là chiều cao của khối lăng trụ.
Vậy thể tích của khối lăng trụ có S = 2a2 và h = 3a là: V = 2a2.3a = 6a3.
A.
B. 6a3;
C. 2a3;
D. a3.
Lời giải:
Đáp án đúng là: C
Thể tích của khối chóp được tính theo công thức: , trong đó S là diện tích đáy, h là chiều cao của khối chóp.
Vậy thể tích của khối chóp có S = 2a2 và h = 3a là:
A. 38a3;
B. 76a3;
C. 114a3;
D.
Lời giải:
Đáp án đúng là: A
Thể tích của khối chóp cụt đều được tính theo công thức: trong đó h là chiều cao và S1, S2 lần lượt là diện tích hai đáy của khối chóp cụt đều.
Vậy thể tích của khối chóp cụt đều có h = 6a, S1 = 4a2, S2 = 9a2 là:
Bài 54 trang 117 SBT Toán 11 Tập 2: Cho khối tứ diện đều ABCD cạnh a. Tính:
a) Khoảng cách giữa hai đường thẳng AB và CD;
b) Chiều cao và thể tích của khối tứ diện đều ABCD;
c) Côsin của góc giữa đường thẳng AB và mặt phẳng (BCD);
d) Côsin của số đo góc nhị diện [C, AB, D].
Lời giải:
a) Do ABCD là tứ diện đều cạnh nên các tam giác ABC, ABD, ACD, BCD là các tam giác đều cạnh a.
Gọi M, N lần lượt là trung điểm của AB và CD nên
Xét tam giác ABC đều có CM là đường trung tuyến (do M là trung điểm AB).
Suy ra CM là đường cao của tam giác ABC hay CM ⊥ AB.
Chứng minh tương tự đối với các tam giác ABD, BCD, ACD đều ta có: DM ⊥ AB, BN ⊥ CD, AN ⊥ CD.
· Ta có: AB ⊥ CM, AB ⊥ DM, CM ∩ DM = M trong (CDM)
Suy ra AB ⊥ (CDM).
Mà MN ⊂ (CDM) nên AB ⊥ MN.
· Ta có: CD ⊥ BN, CD ⊥ AN, BN ∩ AN = N trong (ABN)
Suy ra CD ⊥ (ABN).
Mà MN ⊂ (ABN) nên CD ⊥ MN.
Ta có: AB ⊥ MN, CD ⊥ MN.
Suy ra MN là đoạn vuông góc chung của hai đường thẳng AB và CD.
Như vậy: d(AB, CD) = MN.
Áp dụng định lí Pythagore trong tam giác BCM vuông tại M có:
MC2 = BC2 – BM2
Áp dụng định lí Pythagore trong tam giác CMN vuông tại N có:
CM2 = MN2 + CN2
Vậy
b) Gọi H là hình chiếu của A trên (BCD) hay AH ⊥ (BCD).
Do ABCD là tứ diện đều, nên H là tâm đường tròn ngoại tiếp của tam giác BCD.
Vì tam giác BCD đều nên H cũng là trọng tâm của tam giác BCD.
Mà BN là đường trung tuyến của tam giác BCD (do N là trung điểm của CD)
Suy ra: H ∈ BN và
Ta có: AH ⊥ (BCD), BH ⊂ (BCD) nên AH ⊥ BH.
Áp dụng định lí Pythagore trong tam giác BCN vuông tại N có:
BC2 = BN2 + CN2
Suy ra
Từ đó ta có
· Áp dụng định lí Pythagore trong tam giác ABH vuông tại H (do AH ⊥ BH) có:
AB2 = AH2 + BH2
Suy ra
· Diện tích tam giác BCD là:
(đvdt).
· Thể tích của khối tứ diện ABCD có đường cao và diện tích đáy là:
(đvtt).
c) Do H là hình chiếu của A trên (BCD) nên góc giữa đường thẳng AB và mặt phẳng (BCD) bằng góc giữa hai đường thẳng AB và BH và bằng
Xét tam giác ABH vuông tại H có:
Vậy côsin của góc giữa đường thẳng AB và mặt phẳng (BCD) là
d) Theo câu a ta có: CM ⊥ AB, DM ⊥ AB, CM ∩ DM = M ∈ AB.
Nên là góc phẳng nhị diện của góc nhị diện [C, AB, D].
Xét tam giác CMD, theo hệ quả định lí Côsin ta có:
Vậy côsin của số đo góc nhị diện [C, AB, D] bằng
Bài 55 trang 117 SBT Toán 11 Tập 2: Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Tính:
a) Khoảng cách giữa hai mặt phẳng (ABCD) và (A’B’C’D’);
b) Số đo của góc nhị diện [A, CD, B’];
c) Tang của góc giữa đường thẳng BD’ và mặt phẳng (ABCD);
d) Khoảng cách giữa hai đường thẳng C’D và BC;
e*) Góc giữa hai đường thẳng BC’ và CD’.
Lời giải:
Ta có: ABCD.A’B’C’D’ là hình lập phương cạnh a nên tất cả các mặt bên và hai mặt đáy của hình lập phương ABCD. A’B’C’D’ đều là hình vuông cạnh a.
a) Do ABCD.A’B’C’D’ là hình lập phương nên ta có (ABCD) // (A’B’C’D’) và AA’ ⊥ (ABCD).
Như vậy: d((ABCD), (A’B’C’D’)) = d(A’, (ABCD)) = AA’ = a.
b) Do ABCD.A’B’C’D’ là hình lập phương nên ta có A’B’ // DC.
Suy ra bốn điểm A’, B’, C, D đồng phẳng.
Khi đó, góc nhị diện [A, CD, B’] bằng góc nhị diện [A, CD, A’].
Ta có: CD ⊥ AD, CD ⊥ DD’ (do ABCD, D’C’CD là hai hình vuông), AD ∩ DD’ = D trong (A’D’DA).
Suy ra CD ⊥ (A’D’DA).
Hơn nữa A’D ⊂ (A’D’DA).
Nên ta có CD ⊥ A’D.
Ta thấy: A’D ⊥ CD, AD ⊥ CD (do ABCD là hình vuông), AD ∩ A’D = D ∈ CD.
Suy ra là góc phẳng nhị diện của góc nhị diện [A, CD, A’] hay góc nhị diện [A, CD, B’].
Vì ADD’A là hình vuông nên
Vậy số đo của góc nhị diện [A, CD, B’] bằng 45°
c) Vì DD’ ⊥ (ABCD) nên góc giữa đường thẳng BD’ và mặt phẳng (ABCD) bằng góc giữa hai đường thẳng BD’ và BD và bằng
Do ABCD là hình vuông cạnh a, nên ta có
Ta có: DD’ ⊥ (ABCD), BD ⊂ (ABCD) nên DD’ ⊥ BD.
Xét tam giác D’DB vuông tại D có:
Vậy tang của góc giữa đường thẳng BD’ và mặt phẳng (ABCD) bằng
d) Gọi I là giao điểm của CD’ và C’D.
Do D’C’CD là hình vuông nên I là trung điểm của CD’ và CD’ ⊥ C’D hay IC ⊥ C’D.
Ta có: BC ⊥ (D’C’CD) (do ABCD.A’B’C’D’ là hình lập phương)
Mà IC ⊂ (D’C’CD) nên BC ⊥ IC.
Ta thấy: IC ⊥ C’D, IC ⊥ BC nên IC là đoạn vuông góc chung của hai đường thẳng C’D và BC.
Như vậy:
Do ABCD, D’C’CD, A’D’DA là các hình vuông cạnh a nên có các đường chéo
Suy ra
Vậy khoảng cách giữa hai đường thẳng C’D và BC bằng
e*) Ta có: D’C’ song song và bằng DC, DC song song và bằng AB (do DC’CD, ABCD là hai hình vuông cạnh a), nên D’C’ song song và bằng AB.
Suy ra ABC’D’ là hình bình hành nên ta có BC’ // AD’.
Khi đó góc giữa hai đường thẳng BC’ và CD’ bằng góc giữa hai đường thẳng AD’ và CD’ và bằng
Vì nên tam giác ACD’ là tam giác đều.
Suy ra
Vậy góc giữa hai đường thẳng BC’ và CD’ bằng 60°.
Lời giải:
Ta thấy rằng đáy của viên gạch cần làm là lục giác đều.
Chia hình lục giác đều thành 6 hình tam giác đều có cạnh là 21,5 cm (hình vẽ trên).
Gọi ABC là tam đều cạnh 21,5 cm, kẻ đường cao AH (H ∈ BC) (hình vẽ trên).
Suy ra AH cũng là đường trung tuyến của tam giác ABC hay H là trung điểm của BC.
Áp dụng định lí Pythagore trong tam giác AHC vuông tại H có:
AC2 = AH2 + HC2
Suy ra
Từ đó ta có diện tích tam giác ABC đều cạnh 21,5 cm là
Như vậy, ta có diện tích 1 tam giác đều cạnh 21,5 cm là:
Khi đó, diện tích đáy của viên gạch (gồm 6 hình tam giác đều có cạnh là 21,5 cm) là: (cm2).
Vậy thể tích bê tông cần dùng để làm một viên gạch có dạng khối lăng trụ với chiều cao h = 4 cm và diện tích đáy (cm2) là:
(cm3).
Xem thêm các bài SBT Toán 11 Cánh Diều hay, chi tiết khác:
Bài 54 trang 117 SBT Toán 11 Tập 2: Cho khối tứ diện đều ABCD cạnh a. Tính:
a) Khoảng cách giữa hai đường thẳng AB và CD;
b) Chiều cao và thể tích của khối tứ diện đều ABCD;
c) Côsin của góc giữa đường thẳng AB và mặt phẳng (BCD);
Bài 55 trang 117 SBT Toán 11 Tập 2: Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Tính:
a) Khoảng cách giữa hai mặt phẳng (ABCD) và (A’B’C’D’);
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.