Với giải Bài 10.14 trang 122 Toán 8 Tập 2 Kết nối tri thức chi tiết trong Luyện tập chung (trang 121) giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:
Bài 10.14 trang 122 Toán 8 Tập 2 | Kết nối tri thức Giải Toán lớp 8
Bài 10.14 trang 122 Toán 8 Tập 2: Người ta làm mô hình một kim tự tháp ở cổng vào của bảo tàng Louvre. Mô hình có dạng hình chóp tứ giác đều, chiều cao 21 m, độ dài cạnh đáy là 34 m.
a) Tính thể tích hình chóp.
b) Tính tổng diện tích các tấm kính để phủ kín bốn mặt bên hình chóp này, biết rằng người ta đo được độ dài cạnh bên của hình chóp là 31,92 m.
Lời giải:
a) Thể tích hình chóp tứ giác đều là:
V = . Sđáy . h = . 342 . 21 = 8 092 (cm3).
b) Mô tả hình chóp như hình dưới đây.
Ta có SI = 21 m, EF = FG = GH = HE = 34 m, SE = SF = SG = SH = 31,92 m.
SK là một trung đoạn của hình chóp.
K là trung điểm của GH nên GK = KH = m.
Áp dụng định lí Pythagore cho tam giác SKH vuông tại H, ta có:
KH2 + SK2 = SH2
Hay 172 + SK2 = (31,92)2
Suy ra SK2 = (31,92)2 – 172 ≈ 729,89. Do đó, SK ≈ 27,02 m.
Diện tích xung quanh của hình chóp tứ giác đều hay tổng diện tích các tấm kính để phủ kín bốn mặt bên hình chóp này là:
Sxq = p . d ≈ = 1 837,36 (m2
Xem thêm Lời giải bài tập Toán 8 Kết nối tri thức hay, chi tiết khác:
Xem thêm Lời giải bài tập Toán 8 Kết nối tri thức hay, chi tiết khác:
Bài 38: Hình chóp tam giác đều
Bài tập cuối chương 10 trang 123
Một vài ứng dụng của hàm số bậc nhất trong tài chính
Ứng dụng định lí Thalès, định lí Pythagore và tam giác đồng dạng để đo chiều cao, khoảng cách
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.