Toptailieu.vn xin giới thiệu Lý thuyết Khoảng cách trong không gian (Chân trời sáng tạo) hay, chi tiết | Lý thuyết Toán 11 Bài viết gồm phần lý thuyết trọng tâm nhất được trình bày một cách dễ hiểu, dễ nhớ bên cạnh đó là bộ câu hỏi trắc nghiệm có hướng dẫn giải chi tiết để học sinh có thể vận dụng ngay lý thuyết, nắm bài một cách hiệu quả nhất. Mời các bạn đón xem:
Lý thuyết Khoảng cách trong không gian (Chân trời sáng tạo) hay, chi tiết | Lý thuyết Toán 11
A. Lý thuyết Khoảng cách trong không gian
1. Khoảng cách từ một điểm đến một đường thẳng, đến một mặt phẳng
Nếu H là hình chiếu vuông góc của điểm M trên đường thẳng a thì độ dài đoạn MH được gọi là khoảng cách từ M đến đường thẳng a, kí hiệu d(M, a).
Nếu H là hình chiếu vuông góc của điểm M trên mặt phẳng (P) thì độ dài đoạn MH được gọi là khoảng cách từ điểm M đến (P), kí hiệu d(M, (P)).
Quy ước:
Nhận xét:
a) Lấy điểm N tùy ý trên đường thẳng a, ta luôn có .
b) Lấy điểm N tùy ý trên mặt phẳng , ta luôn có .
2. Khoảng cách giữa các đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song
Khoảng cách giữa hai đường thẳng song song a và b là khoảng cách từ một điểm bất kì trên a đến b, kí hiệu d(a, b).
Khoảng cách giữa đường thẳng a đến mặt phẳng (P) song song với a là khoảng cách từ một điểm bất kì trên a đến (P), kí hiệu d(a, (P)).
Khoảng cách giữa hai mặt phẳng song song (P) và (Q) là khoảng cách từ một điểm bất kì trên (P) đến (Q), kí hiệu d((P), (Q)).
3. Khoảng cách giữa hai đường thẳng chéo nhau
Đường thẳng c vừa vuông góc, vừa cắt hai đường thẳng chéo nhau a và b được gọi là đường vuông góc chung của a và b.
Nếu đường vuông góc chung của hai đường thẳng chéo nhau a và b cắt chúng lần lượt tại I và J thì đoạn IJ gọi là đoạn vuông góc chung của a và b.
Khoảng cách giữa hai đường thẳng chéo nhau là độ dài đoạn vuông góc chung của hai đường thẳng đó, kí hiệu d(a, b)
Chú ý:
a) Khoảng cách giữa hai đường thẳng chéo nhau a và b bằng khoảng cách giữa một trong hai đường thẳng đến mặt phẳng song song với nó và chứa đường thẳng còn lại.
b) Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa hai mặt phẳng song song lần lượt chứa hai đường thẳng đó.
4. Công thức tính thể tích của khối chóp, khối lăng trụ, khối hộp
Thể tích khối hộp chữ nhật bằng ba kích thước:
Thể tích khối chóp bằng một phần ba diện tích đáy nhân với chiều cao:
Thể tích khối chóp cụt đều có chiều cao h và diện tích hai đáy S, S’:
Thể tích khối lăng trụ bằng tích diện tích đáy và chiều cao:
B. Bài tập Khoảng cách trong không gian
Đang cập nhật ...
Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 sách Chân trời sáng tạo hay, chi tiết khác:
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.