Lý thuyết Khoảng cách (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 11

269

Toptailieu.vn xin giới thiệu Lý thuyết Khoảng cách (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 11 Bài viết gồm phần lý thuyết trọng tâm nhất được trình bày một cách dễ hiểu, dễ nhớ bên cạnh đó là bộ câu hỏi trắc nghiệm có hướng dẫn giải chi tiết để học sinh có thể vận dụng ngay lý thuyết, nắm bài một cách hiệu quả nhất. Mời các bạn đón xem:

Lý thuyết Khoảng cách (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 11

A. Lý thuyết Khoảng cách

1. Khoảng cách từ một điểm đến một đường thẳng, đến một mặt phẳng

Lý thuyết Khoảng cách (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11 (ảnh 1)

- Khoảng cách từ một điểm M đến một đường thẳng a, kí hiệu là d(M, a), là khoảng cách giữa M và hình chiếu H của M trên a.

- Khoảng cách từ một điểm M đến một mặt phẳng (P), kí hiệu d(M, (P)), là khoảng cách giữa M và hình chiếu H của M trên (P).

Chú ý: d(M, a) = 0 khi và chỉ khi Ma;d(M,(P))=0 khi và chỉ khi M(P).

Nhận xét: Khoảng cách từ M đến đường thẳng a (mặt phẳng (P)) là khoảng cách nhỏ nhất giữa M và một điểm thuộc a (thuộc (P)).

Chú ý: Khoảng cách từ đỉnh đến mặt phẳng chứa mặt đáy của một hình chóp được gọi là chiều cao của hình chóp đó.

2. Khoảng cách giữa các đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song

- Khoảng cách giữa đường thẳng a và mặt phẳng (P) song song với a, kí hiệu d(a, (P)), là khoảng cách từ một điểm bất kì trên a đến (P).

- Khoảng cách giữa hai mặt phẳng song song (P) và (Q), kí hiệu d((P), (Q)), là khoảng cách từ một điểm bất kì thuộc mặt phẳng này đến mặt phẳng kia.

- Khoảng cách giữa hai đường thẳng song song m và n, kí hiệu d(m, n), là khoảng cách từ một điểm thuộc đường thẳng này đến đường thẳng kia.

Chú ý: Khoảng cách giữa hai đáy của một hình lăng trụ được gọi là chiều cao của hình lăng trụ đó.

3. Khoảng cách giữa hai đường thẳng chéo nhau

Đường thẳng Δ cắt hai đường thẳng chéo nhau a, b và vuông góc với cả hai đường thẳng đó được gọi là đường vuông góc chung của a và b.

Nếu đường vuông góc chung Δ cắt a, b tương ứng tại M, N thì độ dài đoạn thẳng MN được gọi là khoảng cách giữa hai đường thẳng chéo nhau a, b.

Lý thuyết Khoảng cách (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11 (ảnh 2)

Nhận xét:

- Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa một trong hai đường thẳng đó đến mặt phẳng song song với nó và chứa đường thẳng còn lại.

Lý thuyết Khoảng cách (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11 (ảnh 3)

- Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa hai mặt phẳng song song, tương ứng chứa hai đường thẳng đó.

Lý thuyết Khoảng cách (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11 (ảnh 4)

Sơ đồ tư duy Khoảng cách

Lý thuyết Khoảng cách (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11 (ảnh 5)

B. Bài tập Khoảng cách

Đang cập nhật ...

Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 sách Kết nối tri thức hay, chi tiết khác:

Lý thuyết Bài 25: Hai mặt phẳng vuông góc

Lý thuyết Bài 27: Thể tích

Lý thuyết Bài 28: Biến cố hợp, biến cố giao, biến cố độc lập

Lý thuyết Bài 29: Công thức cộng xác suất

Lý thuyết Bài 30: Công thức nhân xác suất cho hai biến cố độc lập

Đánh giá

0

0 đánh giá