Với Giải SBT Toán 10 trang 18 Tập 1 trong Bài 3: Bất phương trình bậc nhất hai ẩn Sách bài tập Toán lớp 10 Tập 1 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 18.
Cho bất phương trình 2x + 3y + 3 ≤ 5x + 2y + 3
Bài 2.2 trang 18 SBT Toán lớp 10 Tập 1: Cho bất phương trình 2x + 3y + 3 ≤ 5x + 2y + 3.
Bằng cách chuyển vế, hãy đưa bất phương trình trên về dạng tổng quát của bất phương trình bậc nhất hai ẩn. Biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn đó trên mặt phẳng tọa độ.
Lời giải:
Ta có 2x + 3y + 3 ≤ 5x + 2y + 3
2x + 3y + 3 - 5x - 2y - 3 ≤ 0.
-3x + y ≤ 0.
Biểu diễn miền nghiệm của bất phương trình -3x + y ≤ 0 trên mặt phẳng tọa độ:
Bước 1. Vẽ đường thẳng d: -3x + y = 0 theo các bước sau:
• Xác định hai điểm thuộc đường thẳng d: -3x + y = 0.
Do đó đường thẳng d: -3x + y = 0 đi qua hai điểm có tọa độ (0; 0) và (1; 3).
• Xác định hai điểm đó trên hệ trục tọa độ Oxy, kẻ đường thẳng đi qua 2 điểm đó ta thu được đường thẳng d: -3x + y = 0.
Bước 2. Ta chọn điểm (0; 1) là điểm không thuộc đường thẳng d: -3x + y = 0 và thay vào biểu thức -3x + y ta có -3 . 0 + 1 = 1 > 0.
Do đó miền nghiệm của bất phương trình -3x + y ≤ 0 là nửa mặt phẳng bờ d không chứa điểm (0; 1) (miền không được gạch).
Xem thêm lời giải vở bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Bài 2.1 trang 18 SBT Toán lớp 10 Tập 1:Cho bất phương trình bậc nhất hai ẩn -3x + y < 4...
Bài 2.4 trang 19 SBT Toán lớp 10 Tập 1:Cho bất phương trình x + 2y ≥ -4...
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.