Lập phương trình đường tròn trong mỗi trường hợp sau:

421

Với giải Bài 3 trang 91 Toán lớp 10 Tập 2 Cánh diều chi tiết trong Bài 5: Phương trình đường tròn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:

Giải bài tập Toán 10 Bài 3 trang 91 Toán lớp 10 Tập 2

Bài 3 trang 91 Toán lớp 10 Tập 2: Lập phương trình đường tròn trong mỗi trường hợp sau:

a) Đường tròn có tâm O(– 3; 4) và bán kính R = 9;

b) Đường tròn có tâm I(5; – 2) và đi qua điểm M(4; – 1);

c) Đường tròn có tâm I(1; – 1) và có một tiếp tuyến là Δ: 5x – 12y – 1 = 0;

d) Đường tròn đường kính AB với A(3; – 4) và B(– 1; 6);

e) Đường tròn đi qua ba điểm A(1; 1); B(3; 1); C(0; 4).

Lời giải:

a) Phương trình đường tròn có tâm O(– 3; 4) và bán kính R = 9 là

(x – (– 3))2 + (y – 4)2 = 92 hay (x + 3)2 + (y – 4)2 = 81.

b) Đường tròn có tâm I và đi qua điểm M thì có bán kính là

R = IM = 452+122=2.

Vậy phương trình đường tròn cần lập là (x – 5)2 + (y – (– 2))2 = 22 hay (x – 5)2 + ( y + 2)2 = 2.

c) Khoảng cách từ tâm I của đường tròn đến tiếp tuyến ∆ chính bằng bán kính của đường tròn.

Lập phương trình đường tròn trong mỗi trường hợp sau: (ảnh 1)

Vậy phương trình đường tròn cần lập là x12+y12=16132 hay x12+y+12=256169.

d) Ta có: AB = 132+642=229.

Gọi I là trung điểm của AB, ta có tọa độ của I là xI=3+12=1,yI=4+62=1 hay I(1; 1).

Đường tròn đường kính AB có tâm là trung điểm I của AB và có bán kính R =AB2=29.

Vậy phương trình đường tròn đường kính AB là (x – 1)2 + (y – 1)2 = 29.

e) Giả sử tâm của đường tròn là điểm I(a; b).

Ta có IA = IB = IC ⇔ IA2 = IB2 = IC2.

Vì IA2 = IB2, IB2 = IC2 nên

Lập phương trình đường tròn trong mỗi trường hợp sau: (ảnh 2)

Đường tròn tâm I(2; 3) bán kính R = IC = a2+4b2=22+432=5.

Phương trình đường tròn là x22+y32=52.

Vậy phương trình đường tròn là (x – 2)2 + (y – 3)2 = 5.

Xem thêm các bài giải Toán 10 Kết nối tri thức hay, chi tiết khác:

Câu hỏi khởi động trang 87 Toán lớp 10 Tập 2: Ở một số công viên, người ta dựng vòng quay có bán kính rất lớn

Hoạt động 1 trang 87 Toán lớp 10 Tập 2: a) Tính khoảng cách từ gốc tọa độ O(0; 0) đến điểm M(3; 4) trong mặt

Hoạt động 2 trang 87 Toán lớp 10 Tập 2: Trong mặt phẳng tọa độ Oxy, nêu mối liên hệ giữa x và y để:

Luyện tập 1 trang 88 Toán lớp 10 Tập 2: Viết phương trình đường tròn tâm I(6; – 4) đi qua điểm A(8; – 7)

Hoạt động 3 trang 88 Toán lớp 10 Tập 2: Viết phương trình đường tròn (C): (x – a)2 + (y – b)2 = R2 về dạng x2 + y2 – 2ax – 2by + c = 0.

Luyện tập 2 trang 89 Toán lớp 10 Tập 2: Tìm k sao cho phương trình: x2 + y2 + 2kx + 4y + 6k – 1 = 0 là phương

Luyện tập 3 trang 89 Toán lớp 10 Tập 2: Lập phương trình đường tròn đi qua ba điểm A(1; 2), B(5; 2), C(1; – 3).

Hoạt động 4 trang 90 Toán lớp 10 Tập 2: Cho điểm M0(x0; y0) nằm trên đường tròn (C) tâm I(a; b) bán kính R.

Luyện tập 4 trang 90 Toán lớp 10 Tập 2: Lập phương trình tiếp tuyến tại điểm M0(– 1; – 4) thuộc đường tròn

Bài 1 trang 91 Toán lớp 10 Tập 2: Phương trình nào sau đây là phương trình đường tròn?

Bài 2 trang 91 Toán lớp 10 Tập 2: Tìm tâm và bán kính của đường tròn trong mỗi trường hợp sau:

Bài 4 trang 92 Toán lớp 10 Tập 2: Lập phương trình tiếp tuyến tại điểm có hoành độ bằng 3 thuộc đường tròn

Bài 5 trang 92 Toán lớp 10 Tập 2: Tìm m sao cho đường thẳng 3x + 4y + m = 0 tiếp xúc với đường tròn

Bài 6 trang 92 Toán lớp 10 Tập 2: Hình 46 mô phỏng một trạm thu phát sóng điện thoại di động đặt ở vị trí I có toạ

Bài 7 trang 92 Toán lớp 10 Tập 2: Ném đĩa là một môn thể thao thi đấu trong Thế vận hội Olympic mùa hè. Khi

Đánh giá

0

0 đánh giá