Với Giải SBT Toán 10 Tập 2 trong Bài 4: Xác suất của biến cố trong một số trò chơi đơn giản Sách bài tập Toán lớp 10 Tập 2 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10.
Gieo một xúc xắc hai lần liên tiếp. Tính xác suất của mỗi biến cố sau
Bài 25 trang 42 SBT Toán 10: Gieo một xúc xắc hai lần liên tiếp. Tính xác suất của mỗi biến cố sau:
a) A: “Lần thứ hai xuất hiện mặt 5 chấm”;
b) B: “Tổng số chấm xuất hiện trong hai lần gieo bằng 7”;
c) C: “Tổng số chấm xuất hiện trong hai lần gieo chia hết cho 3”;
d) D: “Số chấm xuất hiện lần thứ nhất là số nguyên tố”;
e) E: “Số chấm xuất hiện lần thứ nhất nhỏ hơn số chấm xuất hiện lần thứ hai”.
Lời giải:
Không gian mẫu của trò chơi trên là tập hợp Ω = {(i; j) | i; j = 1; 2; 3; 4; 5; 6}.
Do đó n(Ω) = 36.
a) Các kết quả thuận lợi cho biến cố A là: (1; 5), (2; 5), (3; 5), (4; 5), (5; 5), (6; 5).
Tức là, A = {(1; 5), (2; 5), (3; 5), (4; 5), (5; 5), (6; 5)}.
Vì thế, n(A) = 6.
Vậy xác suất của biến cố A là: P(A) = .
b) Các kết quả thuận lợi cho biến cố B là: (1; 6), (6; 1), (2; 5), (5; 2), (3; 4), (4; 3).
Tức là, B = {(1; 6), (6; 1), (2; 5), (5; 2), (3; 4), (4; 3)}.
Vì thế, n(B) = 6.
Vậy xác suất của biến cố B là: P(B) = .
c) Các kết quả thuận lợi cho biến cố C là: (1; 2), (1; 5), (2; 1), (2; 4), (3; 3), (3; 6), (4; 2), (4; 5), (5; 1), (5; 4), (6; 3), (6; 6).
Tức là, C = {(1; 2), (1; 5), (2; 1), (2; 4), (3; 3), (3; 6), (4; 2), (4; 5), (5; 1), (5; 4), (6; 3), (6; 6)}.
Vì thế, n(C) = 12.
Vậy xác suất của biến cố C là: P(C) = .
d) Các kết quả thuận lợi cho biến cố D là: (2; 1), (2; 2), (2; 3), (2; 4), (2; 5), (2; 6), (3; 1), (3; 2), (3; 3), (3; 4), (3; 5), (3; 6), (5; 1), (5; 2), (5; 3), (5; 4), (5; 5), (5; 6).
Tức là, D = {(2; 1), (2; 2), (2; 3), (2; 4), (2; 5), (2; 6), (3; 1), (3; 2), (3; 3), (3; 4), (3; 5), (3; 6), (5; 1), (5; 2), (5; 3), (5; 4), (5; 5), (5; 6)}.
Vì thế, n(D) = 18.
Vậy xác suất của biến cố D là: P(D) = .
e) Các kết quả thuận lợi cho biến cố E là: (1; 2), (1; 3), (1; 4), (1; 5), (1; 6), (2; 3), (2; 4), (2; 5), (2; 6), (3; 4), (3; 5), (3; 6), (4; 5), (4; 6), (5; 6).
Tức là, E = {(1; 2), (1; 3), (1; 4), (1; 5), (1; 6), (2; 3), (2; 4), (2; 5), (2; 6), (3; 4), (3; 5), (3; 6), (4; 5), (4; 6), (5; 6)}.
Vì thế, n(E) = 15.
Vậy xác suất của biến cố E là: P(E) = .
Xem thêm lời giải sách bài tập Toán lớp 10 Cánh diều với cuộc sống hay, chi tiết khác:
Bài 20 trang 41 SBT Toán 10: Tung một đồng xu hai lần liên tiếp.
a) Xác xuất của biến cố “Kết quả của hai lần tung là khác nhau” là:
Bài 21 trang 42 SBT Toán 10: Gieo một xúc xắc hai lần liên tiếp.
Bài 26 trang 43 SBT Toán 10: Tung một đồng xu ba lần liên tiếp.
a) Tìm số phần tử của tập hợp Ω là không gian mẫu trong trò chơi trên.
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.