Với giải Câu hỏi trang 16 SBT Toán 10 Tập 1 Chân trời sáng tạo trong Bài 2: Các phép toán trong tập hợp giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập SBT Toán 10. Mời các bạn đón xem:
SBT Toán 10 Chân trời sáng tạo trang 16 Bài 3: Các phép toán trong tập hợp
Bài 1 trang 16 SBT Toán 10 Tập 1: Xác định A ∩ B, A ∪ B, A \ B, B \ A trong các trường hợp sau:
a) A = {a; b; c; d}, B = {a; c; e};
b) A = {x | x2 – 5x – 6 = 0}, B = {x | x2 = 1};
c) A = {x ∈ ℕ | x là số lẻ, x < 8}, B = {x ∈ ℕ | x là các ước của 12}.
Lời giải:
a) Ta có: A ∩ B = {x | x ∈ A và x ∈ B}
Các phần tử vừa thuộc A vừa thuộc B là: a; c.
Do đó A ∩ B = {a; c}.
Ta có: A ∪ B = {x | x ∈ A hoặc x ∈ B}
Các phần tử thuộc A hoặc thuộc B là: a; b; c; d; e.
Do đó A ∪ B = {a; b; c; d; e},
Ta có: A \ B = {x | x ∈ A và x ∉ B}
Các phần tử thuộc A nhưng không thuộc B là: b; d.
Do đó A \ B = {b; d}.
Ta có: B \ A = {x | x ∈ B và x ∉ A}
Phần tử thuộc B nhưng không thuộc A là: e.
Do đó, B \ A = {e}.
b) Giải phương trình x2 – 5x – 6 = 0.
Ta có: x2 – 5x – 6 = 0
⇔ x2 + x – 6x – 6 = 0
⇔ x(x + 1) – 6(x + 1) = 0
⇔ (x – 6)(x + 1) = 0
⇔ x = 6 hoặc x = – 1.
Do đó, A = {– 1; 6}.
Ta có: x2 = 1 ⇔ x = 1 hoặc x = – 1.
Do đó, B = {– 1; 1}.
Vậy A ∩ B = {x | x ∈ A và x ∈ B} = {– 1};
A ∪ B = {x | x ∈ A hoặc x ∈ B} = {– 1; 1; 6};
A \ B = {x | x ∈ A và x ∉ B} = {6};
B \ A = {x | x ∈ B và x ∉ A} = {1}.
c) Các số tự nhiên lẻ nhỏ hơn 8 là: 1; 3; 5; 7. Do đó, A = {1; 3; 5; 7}.
Các số tự nhiên là ước của 12 là: 1; 2; 3; 4; 6; 12. Do đó, B = {1; 2; 3; 4; 6; 12}.
Vậy A ∩ B = {x | x ∈ A và x ∈ B} = {1; 3};
A ∪ B = {x | x ∈ A hoặc x ∈ B} = {1; 2; 3; 4; 5; 6; 7; 12};
A \ B = {x | x ∈ A và x ∉ B} = {5; 7};
B \ A = {x | x ∈ B và x ∉ A} = {2; 4; 6; 12}.
Lời giải:
Ta thấy (x; y) ∈ A ∩ B khi (x; y) là nghiệm của hệ phương trình: (I).
Nhân hai vế của (1) với 3, nhân hai vế của (2) với 2, ta được hệ phương trình
Cộng vế với vế hai phương trình của hệ này, ta được 13x = 39 hay x = 3.
Thay x = 3 vào (1) ta được 3 . 3 – 2y = 11, suy ra y = – 1.
Do đó, hệ phương trình (I) có một nghiệm là (3; – 1).
Vậy A ∩ B = {(3; – 1)}.
a) (A ∪ B) ∩ C;
b) A ∩ (B ∩ C);
c) A \ (B ∩ C);
d) (A \ B) ∪ (A \ C).
Lời giải:
a) Ta có: A ∪ B = {x | x ∈ A hoặc x ∈ B} = {1; 2; 3; 4; 5; 7; 9}.
Do đó, (A ∪ B) ∩ C = {x | x ∈ (A ∪ B) và x ∈ C} = {3; 4; 5}.
b) Ta có: B ∩ C = {x | x ∈ B và x ∈ C} = {3; 4}.
Do đó, A ∩ (B ∩ C) = {x | x ∈ A và x ∈ (B ∩ C)} = {3}.
c) Ta có: A \ (B ∩ C) = {x | x ∈ A và x ∉ (B ∩ C)} = {1; 5; 7; 9}.
d) Ta có: A \ B = {x | x ∈ A và x ∉ B} = {5; 7; 9}.
A \ C = {x | x ∈ A và x ∉ C} = {1; 7; 9}.
Do đó, (A \ B) ∪ (A \ C) = {x | x ∈ (A \ B) hoặc x ∈ (A \ C)} = {1; 5; 7; 9}.
Xem thêm các bài giải sách bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 1 trang 16 SBT Toán 10 Tập 1: Xác định A ∩ B, A ∪ B, A \ B, B \ A trong các trường hợp sau...
Bài 9 trang 17 SBT Toán 10 Tập 1: Biết rằng tập hợp M thỏa mãn M ∩ {1; 3} = {1}, M ∩ {5; 7} = {5}...
Bài 10 trang 17 SBT Toán 10 Tập 1: Cho tập hợp A = {1; 2; 3},...
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.