SBT Toán 10 Chân trời sáng tạo trang 17 Bài 3: Các phép toán trong tập hợp

287

Với giải Câu hỏi trang 16 SBT Toán 10 Tập 1 Chân trời sáng tạo trong Bài 3: Các phép toán trong tập hợp giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập SBT Toán 10. Mời các bạn đón xem: 

SBT Toán 10 Chân trời sáng tạo trang 17 Bài 3: Các phép toán trong tập hợp

Bài 4 trang 17 SBT Toán 10 Tập 1Kí hiệu A là tập hợp các học sinh nữ của trường, B là tập hợp các học sinh khối 10 của trường; C, D lần lượt là tập hợp các học sinh nữ, các học sinh nam khối 10 của trường (Hình 7). Hãy điền kí hiệu tập hợp thích hợp vào chỗ chấm.

Kí hiệu A là tập hợp các học sinh nữ của trường, B là tập hợp các học sinh khối 10 của trường (ảnh 1)

a) A ∩ B = ...;

b) C ∪ D = ...;

c) B \ A = ...;

d) B ∩ C = ...;

e) C \ A = ...;

g) D \ A = ...;

Lời giải:

a) Do A là tập hợp các học sinh nữ của trường và B là tập hợp các học sinh khối 10 của trường nên A ∩ B là tập hợp các học sinh nữ khối 10 của trường và chính là tập C.

Kí hiệu A là tập hợp các học sinh nữ của trường, B là tập hợp các học sinh khối 10 của trường (ảnh 3)

Do đó, A ∩ B = C.

b) Do C, D lần lượt là tập hợp các học sinh nữ, các học sinh nam khối 10 của trường nên C ∪ D là tập hợp các học sinh khối 10 của trường và chính là tập hợp B.

Kí hiệu A là tập hợp các học sinh nữ của trường, B là tập hợp các học sinh khối 10 của trường (ảnh 6)

Do đó, C ∪ D = B.

c) B \ A là tập hợp các phần tử thuộc B nhưng không thuộc A, mà B là tập hợp các học sinh khối 10 của trường và A là tập hợp các học sinh nữ của trường, do đó B \ A là tập hợp các học sinh nam khối 10 của trường và chính là tập hợp D.

Kí hiệu A là tập hợp các học sinh nữ của trường, B là tập hợp các học sinh khối 10 của trường (ảnh 5)

Vậy B \ A = D.

d) B ∩ C là tập hợp các phần tử vừa thuộc B vừa thuộc C, mà B là tập hợp các học sinh khối 10 của trường và C là tập hợp các học sinh nữ khối 10 của trường nên B ∩ C = C.

Kí hiệu A là tập hợp các học sinh nữ của trường, B là tập hợp các học sinh khối 10 của trường (ảnh 4)

e) C \ A là tập hợp các phần tử thuộc C nhưng không thuộc A, theo sơ đồ Ven, ta thấy C ⊂ A. Do đó, C \ A = ∅.

g) D \ A là tập hợp các phần tử thuộc D nhưng không thuộc A, mà D là tập hợp các học sinh nam khối 10 của trường và A là tập hợp các học sinh nữ của trường, do đó D \ A là tập hợp các học sinh nam khối 10 của trường và chính là tập D.

Kí hiệu A là tập hợp các học sinh nữ của trường, B là tập hợp các học sinh khối 10 của trường (ảnh 7)

Vậy D \ A = D.

Bài 5 trang 17 SBT Toán 10 Tập 1Cho A là tập hợp tùy ý. Hãy điền kí hiệu tập hợp thích hợp vào chỗ chấm.

a) A ∩ A = ...;

b) A ∪ A = ...;

c) A ∩ ∅ = ...;

d) A ∪ ∅ = ...;

e) A \ A = ...;

g) A \ ∅ = ...;

h) ∅ \ A = ....

Lời giải:

a) A ∩ A = {x | x ∈ A và x ∈ A} = {x | x ∈ A} = A.

b) A ∪ A = {x | x ∈ A hoặc x ∈ A} = {x | x ∈ A} = A.

c) Do ∅ ⊂ A nên A ∩ ∅ = ∅.

d) Do ∅ ⊂ A nên A ∪ ∅ = A.

e) A \ A = {x | x ∈ A và x ∉ A} = ∅.

g) A \ ∅ = A. (Do tập ∅ không có chứa phần tử nào).

h) ∅ \ A = ∅.

Bài 6 trang 17 SBT Toán 10 Tập 1Cho A, B là hai tập hợp tùy ý. Hãy điền kí hiệu tập hợp thích hợp vào chỗ chấm.

a) Nếu B ⊂ A thì A ∩ B = ..., A ∪ B = ... và B \ A = ...;

b) Nếu A ∩ B = ∅ thì A \ B = ... và B \ A = ....

Lời giải:

a) Ta có B ⊂ A, ta biểu diễn sơ đồ Ven như sau:

Cho A, B là hai tập hợp tùy ý. Hãy điền kí hiệu tập hợp thích hợp vào chỗ chấm (ảnh 2)

Khi đó, mọi phần tử của B đều là phần tử của A.

Vậy A ∩ B = B, A ∪ B = A và B \ A = ∅.

b) Ta có A ∩ B = ∅ nên A và B là hai tập hợp rời nhau:

Cho A, B là hai tập hợp tùy ý. Hãy điền kí hiệu tập hợp thích hợp vào chỗ chấm (ảnh 3)

Khi đó mọi phần tử của A và B đều khác nhau.

Vậy A \ B = A và B \ A = B.D

Bài 7 trang 17 SBT Toán 10 Tập 1Cho các tập con A = [– 1; 3] và B = [0; 5) của tập số thực ℝ. Hãy xác định A ∩ B, A ∪ B, A \ B, B \ A.

Lời giải:

+ Để xác định A ∩ B ta vẽ sơ đồ sau:

Cho các tập con A = [– 1; 3] và B = [0; 5) của tập số thực ℝ (ảnh 1)

Từ sơ đồ, ta suy ra A ∩ B = [– 1; 3] ∩ [0; 5) = [0; 3].

+ Để xác định A ∪ B ta vẽ sơ đồ sau:

Cho các tập con A = [– 1; 3] và B = [0; 5) của tập số thực ℝ (ảnh 2)

Từ sơ đồ, ta suy ra A ∪ B = [– 1; 3] ∪ [0; 5) = [– 1; 5).

+ Để xác định A \ B ta vẽ sơ đồ sau:

Cho các tập con A = [– 1; 3] và B = [0; 5) của tập số thực ℝ (ảnh 3)

Từ sơ đồ, ta suy ra A \ B = [– 1; 3] \ [0; 5) = [– 1; 0).

+ Để xác định B \ A ta vẽ sơ đồ sau:

Cho các tập con A = [– 1; 3] và B = [0; 5) của tập số thực ℝ (ảnh 4)

Từ sơ đồ, ta suy ra B \ A = [0; 5) \ [– 1; 3] = (3; 5).

Bài 8 trang 17 SBT Toán 10 Tập 1Lớp 10E có 18 bạn chơi cầu lông, 15 bạn chơi cờ vua, 10 bạn chơi cả hai môn và 12 bạn không chơi môn nào trong hai môn thể thao này.

a) Lớp 10E có bao nhiêu bạn chơi ít nhất một môn thể thao trên?

b) Lớp 10E có bao nhiêu học sinh?

Lời giải:

Kí hiệu A là tập hợp các học sinh của lớp 10E, B = {x ∈ A | x chơi cầu lông},

C = {x ∈ A | x chơi cờ vua}, D = {x ∈ A |x không chơi cầu lông, cũng không chơi cờ vua}.

Lớp 10E có 18 bạn chơi cầu lông, 15 bạn chơi cờ vua, 10 bạn chơi cả hai môn và 12 bạn không chơi môn nào (ảnh 1)

Theo giả thiết, n(B) = 18, n(C) = 15, n(B ∩ C) = 10 và n(D) = 12.

a) Số học sinh của lớp 10E chơi ít nhất một môn thể thao là:

n(B ∪ C) = n(B) + n(C) – n(B ∩ C) = 18 + 15 – 10 = 23 (bạn).

b) Số học sinh của lớp 10E là:

n(A) = n(B ∪ C) + n(D) = 23 + 12 = 35 (bạn).

Bài 9 trang 17 SBT Toán 10 Tập 1Biết rằng tập hợp M thỏa mãn M ∩ {1; 3} = {1}, M ∩ {5; 7} = {5}, M ∩ {9; 11} = {9} và M ⊂ {1; 3; 5; 7; 9; 11}. Hãy tìm M.

Lời giải:

Do M ∩ {1; 3} = {1}, suy ra 1 ∈ M và 3 ∉ M.

Do M ∩ {5; 7} = {5}, suy ra 5 ∈ M và 7 ∉ M.

Do M ∩ {9; 11} = {9}, suy ra 9 ∈ M và 11 ∉ M.

Lại có M ⊂ {1; 3; 5; 7; 9; 11}.

Do đó, các phần tử của M là 1; 5; 9.

Vậy M = {1; 5; 9}.

Bài 10 trang 17 SBT Toán 10 Tập 1Cho tập hợp A = {1; 2; 3},

a) tìm tất cả các tập hợp B sao cho A ∪ B = A;

b) tìm tất cả các tập hợp C sao cho A ∩ C = C.

Lời giải:

a) Ta có A ∪ B = A khi và chỉ khi mọi phần tử của B đều là phần tử của A hay B phải là tập con của A.

Mà A = {1; 2; 3}, nên các tập con của A là: ∅, {1}, {2}, {3}, {1; 2}, {1; 3}, {2; 3}, {1; 2; 3}.

Vậy các tập hợp B cần tìm là: ∅, {1}, {2}, {3}, {1; 2}, {1; 3}, {2; 3}, {1; 2; 3}.

b) Ta có A ∩ C = C khi và chỉ khi mọi phần tử của C đều là phần tử của A hay C là tập con của A.

Vậy các tập hợp C cần tìm là: ∅, {1}, {2}, {3}, {1; 2}, {1; 3}, {2; 3}, {1; 2; 3}.

Bài 11 trang 17 SBT Toán 10 Tập 1Cho U = {3; 5; a2}, A = {3; a + 4}. Tìm giá trị của a sao cho CUA = {1}.

Lời giải:

Ta có: CUA = U \ A = {x | x ∈ U và x ∉ A}.

Mà CUA = {1}, do đó, 1 ∈ U = {3; 5; a2}, suy ra a2 = 1 nên a = 1 hoặc a = – 1.

+ Với a = 1, suy ra a + 4 = 1 + 4 = 5 nên ta có U = {1; 3; 5} và A = {3; 5}.

Khi đó, CUA = U \ A = {1} (thỏa mãn).

+ Với a = – 1, suy ra a + 4 = – 1 + 4 = 3 nên ta có U = {1; 3; 5} và A = {3}.

Khi đó, CUA = U \ A = {1; 5} (không thỏa mãn).

Vậy giá trị cần tìm là a = 1.

Đánh giá

0

0 đánh giá