Với giải Câu hỏi trang 81 SBT Toán 10 Tập 1 Kết nối tri thức trong Bài 14: Các số đặc trưng đo độ phân tán giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập SBT Toán 10. Mời các bạn đón xem:
SBT Toán 10 Kết nối tri thức trang 81 Bài 14: Các số đặc trưng đo độ phân tán
Lời giải:
– Đối với dãy (a) ta có:
• Số trung bình là:
• Phương sai là:
• Độ lệch chuẩn là:
– Đối với dãy (b) ta có:
• Số trung bình là:
• Phương sai là:
• Độ lệch chuẩn là:
– Đối với dãy (c) ta có:
• Số trung bình là:
• Phương sai là:
• Độ lệch chuẩn là:
Vì 1,41 < 2,83 < 4 nên độ lệch chuẩn của dãy (c) lớn nhất.
Vậy độ lệch chuẩn của dãy số liệu (c) là lớn nhất.
a) Tính khoảng tứ phân vị của mẫu số liệu trên.
b) Khoảng tứ phân vị có bị ảnh hưởng bởi chiều cao của bạn cao nhất, bạn thấp nhất không?
Lời giải:
a) Sắp xếp dãy số liệu theo thứ tự không giảm ta được:
• Vì n = 10 là số chẵn nên trung vị là trung bình cộng của hai giá trị chính giữa (số liệu thứ 5 và thứ 6) của mẫu số liệu đã sắp xếp.
Do đó Q2 =
• Nửa dữ liệu bên trái Q2 là: 148; 157; 162; 165; 165.
Dãy này gồm 5 số liệu, n = 5 là số lẻ nên trung vị là giá trị chính giữa (số liệu thứ 3 của nửa dữ liệu bên trái Q2) nên Q1 = 162.
• Nửa dữ liệu bên phải Q2 là: 165; 167; 168; 170; 179.
Dãy này gồm 5 số liệu, n = 5 là số lẻ nên trung vị là giá trị chính giữa (số liệu thứ 3 của nửa dữ liệu bên phải Q2) nên Q3 = 168.
Khi đó khoảng tứ phân vị của mẫu số liệu đã cho là:
Q = Q3 – Q1 = 168 – 162 = 6.
Vậy khoảng tứ phân vị của mẫu số liệu đã cho là 6 cm.
b) Khoảng tứ phân vị là khoảng biến thiên của 50% số liệu chính giữa của mẫu số liệu đã sắp xếp nên đo độ phân tán của 50% dữ liệu này.
Do đó khoảng tứ phân vị không bị ảnh hưởng bởi giá trị nhỏ nhất, giá trị lớn nhất.
Vậy khoảng tứ phân vị không bị ảnh hưởng bởi chiều cao của bạn cao nhất và bạn thấp nhất.
0,398 |
0,399 |
0,408 |
0,410 |
0,406 |
0,405 |
0,402 |
0,401 |
0,290 |
0,402. |
Bình nghĩ là giá trị 0,290 ở lần đo thứ 9 không chính xác. Hãy kiểm tra nghi ngờ của Bình.
Lời giải:
Sắp xếp dãy số liệu theo thứ tự không giảm ta được:
0,290 |
0,398 |
0,399 |
0,401 |
0,402 |
0,402 |
0,405 |
0,406 |
0,408 |
0,410. |
• Vì n = 10 là số chẵn nên trung vị là trung bình cộng của hai giá trị chính giữa (số liệu thứ 5 và thứ 6) của mẫu số liệu đã sắp xếp.
Do đó Q2 =
• Nửa dữ liệu bên trái Q2 là: 0,290; 0,398; 0,399; 0,401; 0,402.
Dãy này gồm 5 số liệu, n = 5 là số lẻ nên trung vị là giá trị chính giữa (số liệu thứ 3 của nửa dữ liệu bên trái Q2) nên Q1 = 0,399.
• Nửa dữ liệu bên phải Q2 là: 0,402; 0,405; 0,406; 0,408; 0,410.
Dãy này gồm 5 số liệu, n = 5 là số lẻ nên trung vị là giá trị chính giữa (số liệu thứ 3 của nửa dữ liệu bên phải Q2) nên Q3 = 0,406.
Khi đó khoảng tứ phân vị của mẫu số liệu đã cho là:
Q = Q3 – Q1 = 0,406 – 0,399 = 0,007.
Ta có: Q1 – 1,5.Q = 0,399 – 1,5.0,007 = 0,3885.
Vì 0,290 < 0,3885 nên đây là giá trị bất thường.
Vậy giá trị 0,290 ở lần đo thứ 9 không chính xác.
Xem thêm lời giải vở bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Bài 5.13 trang 80 sách bài tập Toán lớp 10 Tập 1:Cho hai biểu đồ chấm điểm biểu diễn hai mẫu số liệu A, B như sau...
Bài 5.14 trang 80 sách bài tập Toán lớp 10 Tập 1: Cho hai dãy số liệu sau:...
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.