Ôn tập chương 1: Lý thuyết, cách giải và bài tập hay, chi tiết

192

Toptailieu.vn biên soạn và giới thiệu Chuyên đề Ôn tập chương 1 gồm đầy đủ các phần: Lý thuyết, phương pháp giải, bài tập minh họa có lời giải chi tiết giúp học sinh làm tốt bài tập Toán 12 từ đó học tốt môn Toán. Mời các bạn đón xem:

Ôn tập chương 1: Lý thuyết, cách giải và bài tập hay, chi tiết

A. Lý thuyết

1. Tính đơn điệu của hàm số

1.1 Nhắc lại định nghĩa

- Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y = f(x) xác định trên K. Ta nói:

Hàm số y = f(x) đồng biến (tăng) trên K nếu với mọi cặp x1; x2 thuộc K mà x1 nhỏ hơn x2 thì f(x1) nhỏ hơn f(x2), tức là

x1 < x2f(x1) < f(x2).

Hàm số y = f(x) nghịch biến (giảm) trên K nếu với mọi cặp x1; x2 thuộc K mà x1 nhỏ hơn x2 thì f(x1) lớn hơn f(x2), tức là

x1 < x2f(x1) > f(x2).

- Hàm số đồng biến hoặc nghịch biến trên K được gọi chung là hàm số đơn điệu trên K.

- Nhận xét: Từ định nghĩa trên ta thấy:

a) f(x) đồng biến trên Kf(x2)f(x1)x2x1  >0;x1;x2  K;  (x1x2)

f(x) nghịch biến trên Kf(x2)f(x1)x2x1  < ​0;x1;x2  K;  (x1x2)

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải.

Lý thuyết Ôn tập chương I chi tiết – Toán lớp 12 (ảnh 1)

Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải.

Lý thuyết Ôn tập chương I chi tiết – Toán lớp 12 (ảnh 1)

1.2 Tính đơn điệu và dấu của đạo hàm

- Định lí:

Cho hàm số y = f(x) có đạo hàm trên K.

a) Nếu f’(x) > 0 với mọi x thuộc K thì hàm số f(x) đồng biến trên K.

b) Nếu f’(x) < 0 với mọi x thuộc K thì hàm số f(x) nghịch biến trên K.

- Chú ý:

Nếu f’(x) = 0 với thì f(x) không đổi trên K.

Ví dụ. Tìm các khoảng đơn điệu của hàm số

a) y = x2 + 2x – 10;

b) y=  x+52x3

Lời giải:
a) Hàm số đã cho xác định với mọi xR

Ta có  đạo hàm y’ = 2x + 2

Và y’ = 0 khi x = – 1.

Lập bảng biến thiên:

Lý thuyết Ôn tập chương I chi tiết – Toán lớp 12 (ảnh 1)

Vậy hàm số đã cho đồng biến trên khoảng 1;  +​  và  nghịch biến trên khoảng ;  1.

b) y=  x+52x3

Hàm số đã cho xác định với x32

Ta có: y'=  13(2x3)2  <0x32

Do đó, hàm số đã cho nghịch biến trên khoảng ;  32 và 32;  +​ .

- Chú ý:

Ta có định lí mở rộng sau đây:

Giả sử hàm số y = f(x) có đạo hàm trên K. Nếu f'(x)  0   f'(x)0;xK

Và f’(x) = 0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (nghịch biến) trên K.

Ví dụ.  Tìm các khoảng đơn điệu của hàm số y = x3 – 6x2 + 12x – 10.

Lời giải:

Hàm số đã cho xác định với mọi xR

Ta có: y’ = 3x2 – 12x + 12 = 3(x – 2)2

Do đó; y’ = 0 khi x = 2 và y’ > 0 với x2.

Theo định lí mở rộng, hàm số đã cho luôn luôn đồng biến trên R.

2. Quy tắc xét tính đơn điệu của hàm số.

2.1 Quy tắc

- Bước 1. Tìm tập xác định.

- Bước 2. Tính đạo hàm  f’(x). Tìm các điểm xi  ( i = 1; 2; …; n) mà tại đó đạo hàm bằng 0 hoặc không xác định.

- Bước 3. Sắp xếp các điểm xi theo thứ tự tăng dần và lập bảng biến thiên.

- Bước 4. Nêu kết luận về các khoảng đồng biến, nghịch biến của hàm số.

2.2 Áp dụng

Ví dụ. Xét sự đồng biến, nghịch biến của hàm số y = x4 – 2x2 – 3.

Lời giải:

Hàm số đã cho xác định với mọi x.

Ta có: y’ = 4x3 – 4x

y’ = 0x=0x=  ±1

Bảng biến thiên:

Lý thuyết Ôn tập chương I chi tiết – Toán lớp 12 (ảnh 1)

Vậy hàm số đã cho đồng biến trên (– 1; 0) và (1;  +)

Hàm số nghịch biến trên ;  1 và (0; 1).

Ví dụ.  Cho hàm số . Xét tính đồng biến, nghịch biến của hàm số trên.

Lời giải:

Hàm số đã cho xác định với mọi x.

Ta có: y’ = – 3x2 + 12x – 9

Và y’ = 0x=  1x=3

Bảng biến thiên:

Lý thuyết Ôn tập chương I chi tiết – Toán lớp 12 (ảnh 1)

Vậy hàm số đã cho đồng biến trên (1; 3); nghịch biến trên (;  1) và (3;  +  ).

3. Khái niệm cực đại, cực tiểu.

- Định nghĩa.

Cho hàm số y = f(x) xác định và liên tục trên khoảng (a; b) (có thể a là -; b là +) và điểm x0(a; b).

a) Nếu tồn tại số h > 0 sao cho f(x) < f(x0) với mọi x(x0 – h; x0 + h) và xx0 thì ta nói hàm số f(x) đạt cực đại tại x0.

b) Nếu tồn tại số h > 0 sao cho f(x) > f(x0) với mọi x(x0 – h; x0 + h) và xx0 thì ta nói hàm số f(x) đạt cực tiểu tại x0.

- Chú ý:

1. Nếu hàm số f(x) đạt cực đại (cực tiểu) tại x0 thì x0 được gọi là điểm cực đại (điểm cực tiểu) của hàm số; f(x0) được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số.

Kí hiệu là f (fCT) còn điểm M(x0; f(x0)) được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số.

2. Các điểm cực đại, cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn gọi là cực đại (cực tiểu) và được gọi chung là cực trị của hàm số.

3. Dễ dàng chứng minh được rằng, nếu hàm số y = f(x) có đạo hàm trên khoảng (a; b) và đạt cực đại hoặc cực tiểu tại x0 thì f’(x0) = 0.

4. Điều kiện đủ để hàm số có cực trị

- Định lí 1

Giả sử hàm số y = f(x) liên tục trên khoảng K = (x0 – h; x0 + h) và có đạo hàm trên K  hoặc trên K \ {x0}; với h > 0.

a) Nếu f’(x) > 0 trên khoảng (x0 – h; x0) và f’(x) < 0 trên khoảng (x0; x0 + h) thì x0 là một điểm cực đại của hàm số f(x).

b) Nếu f’(x) < 0 trên khoảng (x0 – h; x0) và f’(x) > 0 trên khoảng (x0; x0 + h) thì x0 là một điểm cực tiểu của hàm số f(x).

Lý thuyết Ôn tập chương I chi tiết – Toán lớp 12 (ảnh 1)Lý thuyết Ôn tập chương I chi tiết – Toán lớp 12 (ảnh 1)

Ví dụ. Tìm các điểm cực trị của hàm số y = – 2x3 + 3x2.

Lời giải:

Hàm số xác định với mọi x.

Ta có: y’ = – 6x2 + 6x

Và y’ = 0x=0x=1

Bảng biến thiên:

Lý thuyết Ôn tập chương I chi tiết – Toán lớp 12 (ảnh 1)

Từ bảng biến thiên, suy ra x = 0 là điểm cực tiểu của hàm số và x = 1 là điểm cực đại của hàm số.

Ví dụ. Tìm các điểm cực trị của hàm số y=2x2x+​ 2.

Lời giải:

Hàm số đã cho xác định với x  1.

Ta có: y'  =  6(2x+2)2<0x  1

Vậy hàm số đã cho không có cực trị (vì theo khẳng định 3 của chú ý trên, nếu hàm số đạt cực trị tại x0 thì y’(x0) = 0).

5. Quy tắc tìm cực trị.

- Quy tắc 1.

1. Tìm tập xác định.

2. Tính f’(x). Tìm các điểm tại đó f’(x) bằng 0 hoặc f’(x) không xác định.

3. Lập bảng biến thiên.

4. Từ bảng biến thiên suy ra các điểm cực trị.

- Định lí 2.

Giả sử hàm số y = f(x) có đạo  hàm cấp hai trong khoảng (x0 – h; x0 + h) với h > 0. Khi đó:

a) Nếu f’(x0) = 0; f”(x0) > 0 thì x0 là điểm cực tiểu;

b) Nếu f’(x0) = 0; f”(x0) < 0 thì x0 là điểm cực đại.

- Quy tắc II.

1. Tìm tập xác định

2. Tính f’(x). Giải phương trình f’(x) = 0 và kí hiệu xi ( i = 1; 2; ….; n) là các nghiệm của nó.

3. Tính f”(x) và f”(xi).

4. Dựa vào dấu của f”(xi) suy ra tính chất cực trị của điểm xi.

- Ví dụ. Tìm cực trị của hàm số .

Lời giải:

Hàm số đã cho xác định với mọi x

Ta có: f’(x) = 4x3 – 4x

f'(x)=0  x=0x  =  ±1

Ta có: f”(x) = 12x2 – 4

Suy ra: f”(0) = – 4 < 0 nên x = 0 là điểm cực đại.

f”(1) = f”(– 1)  = 8 > 0 nên x = 1 và x = –1 là điểm cực tiểu.

Kết luận:

Hàm số f(x) đạt cực tiểu tại x = 1 và x = – 1; fCT = f(1) = f(–1) = 9.

Hàm số f(x) đạt cực đại tại x = 0 và fCD = f(0) = 10.

6. Định nghĩa GTLN, GTNN

Cho hàm số y = f(x) xác định trên tập D.

a) Số M được gọi là giá trị lớn nhất của hàm số y = f(x) trên tập D nếu f(x)    M với mọi x thuộc D và tồn tại x0D sao cho f(x0) = M.

Kí hiệu: M=maxDfx.

b) Số m được gọi là giá trị nhỏ nhất của hàm số y = f(x) trên tập D nếu f(x)M với mọi x thuộc D và tồn tại x0D sao cho f(x0) = m.

Kí hiệu: m=minDfx.

- Ví dụ. Cho hàm số y = f(x) có bảng biến thiên như sau:

Lý thuyết Ôn tập chương I chi tiết – Toán lớp 12 (ảnh 1)

Dựa vào bảng biến thiên ta thấy, hàm số không có giá trị lớn nhất.

Giá trị nhỏ nhất của hàm số là – 9 tại x = – 3.

7. Cách tính giá trị  lớn nhất và giá trị nhỏ nhất của hàm số trên một đoạn

1. Định lí.

Mọi hàm số liên tục trên một đoạn đều có giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.

1. Quy tắc tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một đoạn.

- Nhận xét:

Nếu đạo hàm f’(x) giữ nguyên dấu trên đoạn [a; b] thì hàm số đồng biến hoặc nghịch biến trên cả đoạn. Do đó, f(x) đạt được giá trị lớn nhất và giá trị nhỏ nhất tại các đầu mút của đoạn.

Nếu chỉ có một số hữu hạn các điểm xi (xi < xi+ 1) mà tại đó f’(x) bằng 0 hoặc không xác định thì hàm số y = f(x) đơn điệu trên mỗi khoảng (xi;  xi+1). Rõ ràng, giá trị lớn nhất (giá trị nhỏ nhất) của hàm số trên đoạn [a; b] là số lớn nhất (số nhỏ nhất) trong các giá trị của hàm số tại hai đầu mút a; b và tại các điểm xi nói trên.

- Quy tắc:

1. Tìm các điểm x1; x2; …; xn trên khoảng (a; b), tại đó f’(x) bằng 0 hoặc f’(x) không xác định.

2. Tính f(a); f(x1); f(x2); ….; f(xn); f(b).

3. Tìm số lớn nhất M và số nhỏ nhất m trong các số trên. Ta có:

M  =max[a;b]  f(x);m=min[a;  b]  f(x)

- Chú ý: Hàm số liên tục trên một khoảng có thể không có giá trị lớn nhất và giá trị nhỏ nhất trên khoảng đó. Chẳng hạn hàm số f(x)  =  1x không có giá trị lớn nhất, giá trị nhỏ nhất trên khoảng (0; 1).

Tuy nhiên, cũng có những hàm số có giá trị lớn nhất hoặc giá trị nhỏ nhất trên một khoảng như ví dụ sau:

Ví dụ. Tìm giá trị lón nhất, nhỏ nhất của hàm số y=  2xx2 trên khoảng 0;  32.

Lời giải:

Lý thuyết Ôn tập chương I chi tiết – Toán lớp 12 (ảnh 1)

Bảng biến thiên:

Lý thuyết Ôn tập chương I chi tiết – Toán lớp 12 (ảnh 1)

Từ bảng biến thiên trên ta thấy, trên khoảng 0;  32 hàm số có 1 điểm cực trị duy nhất là điểm cực đại x = 1 và tại đó hàm số đạt giá trị lớn nhất Max0;  32  f(x)=f(1)  =1.

8. Đường tiệm cận

8.1 Đường tiệm cận ngang

- Định nghĩa: Cho hàm số y = f(x) xác định trên một khoảng vô hạn (là khoảng dạng (  a;  +);  (;b);(;  +)). Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

limx+f(x)=y0;  limxf(x)=y0

Ví dụ. Cho hàm số y=  x+2x2  +​  1.

Hàm số xác định trên khoảng (;  +).

Đồ thị hàm số  có tiệm cận ngang là y = 0 vì limx+x+2x2  +​  1=0;limxx+2x2  +​  1=0

8.2 Đường tiệm cận đứng

- Định nghĩa:

Đường thẳng x = x0 được gọi là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

limxx0+f(x)=  +limxx0+f(x)=  limxx0f(x)=  +limxx0f(x)=  

- Ví dụ. Tìm đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y=  x​​ +2x  4.

Lời giải:

Ta có: limx+x+2x4=1;limxx+2x  4=1 nên đồ thị hàm số có tiệm cận ngang là y = 1.

Lại có: limx4+x+​  2x  4=  +;limx4  x  +​  2x4=  ;

Suy ra:  đồ thị hàm số có tiệm cận đứng là x = 4.

9. Sơ đồ khảo sát hàm số

1. Tập xác định

Tìm tập xác định của hàm số.

2. Sự biến thiên.

+ Xét chiều biến thiên của hàm số.

 - Tính đạo hàm y’.

 - Tìm các điểm tại đó đạo hàm y’ bằng 0 hoặc không xác định.

 - Xét dấu đạo hàm y’ và suy ra chiều biến thiên của hàm số.

+ Tìm cực trị

+ Tìm các giới hạn tại vô cực, các giới hạn vô cực và tìm các tiệm cận (nếu có).

+ Lập bảng biến thiên (ghi các kết quả tìm được vào bảng biến thiên).

3. Đồ thị

Dựa vào bảng biến thiên và các yếu tố ở trên để vẽ đồ thị hàm số.

- Chú ý:

1. Nếu hàm số tuần hoàn với chu kì T thì chỉ cần khảo sát sự biến thiên và vẽ đồ thị trên một chu kì, sau đó tịnh tiến đồ thị song song với trục Ox.

2. Nên tính thêm tọa độ một số điểm, đặc biệt là tọa độ các giao điểm của đồ thị với các trục tọa độ.

3. Nên lưu ý tính chẵn, lẻ của hàm số và tính đối xứng của đồ thị để vẽ cho chính xác.

10. Khảo sát một số hàm đa thức và hàm phân thức.

10.1. Hàm số y = ax3 + bx2 + cx  + d (a ≠ 0)

Ví dụ. Khảo sát sự biến thiên và vẽ đồ thị hàm số y = – x3  + 3x2 – 1

Lời giải:

1. Tập xác định: R.

2. Sự biến thiên

+ Chiều biến thiên:

y’ = – 3x2 + 6x; y’ = 0x=0x=2

Trên các khoảng (;  0)và (2;   +);  y' âm nên hàm số nghịch biến.

Trên khoảng (0; 2); y’ dương nên  hàm số đồng biến.

+ Cực trị

Hàm số đạt cực đại tại x = 2; yCĐ  = y(2) = 3

Hàm số đạt cực tiểu tại x = 0; yCT = y(0) = –1.

+ Các giới hạn vô cực:

limx+  (x3+3x21)  =  ;limx  (x3+3x21)  =  +

+ Bảng biến thiên:

Lý thuyết Ôn tập chương I chi tiết – Toán lớp 12 (ảnh 1)

3. Đồ thị

Ta có y(0) = – 1 nên (0; – 1) là giao điểm của đồ thị với trục Oy. Điểm đó cũng là điểm cực tiểu của đồ thị.

Đồ thị hàm số được cho trên hình bên.

Lý thuyết Ôn tập chương I chi tiết – Toán lớp 12 (ảnh 1)

Ví dụ. Khảo sát sự biến thiên và vẽ đồ thị hàm số y = x3 – 3x2  + 3x + 1.

Lời giải:

1. Tập xác định: R.

2. Sự biến thiên.

+ Chiều biến thiên:

Vì y’= 3x2 – 6x + 3 = 3(x – 1)2 0  xRvà f’(x) = 0 tại x = 1 nên hàm số đã cho đồng biến trên khoảng (;  +  ).

Hàm số không có cực trị.

+ Giới hạn vô cực:

Lý thuyết Ôn tập chương I chi tiết – Toán lớp 12 (ảnh 1)

Bảng biến thiên:

Lý thuyết Ôn tập chương I chi tiết – Toán lớp 12 (ảnh 1)

3. Đồ thị hàm số đã cho cắt trục Oy tại điểm (0; 1) và đi qua điểm A(1; 2).

Đồ thị hàm số được cho như hình vẽ dưới đây.

Lý thuyết Ôn tập chương I chi tiết – Toán lớp 12 (ảnh 1)

Dạng của đồ thị hàm số bậc ba y = ax3 + bx2 + cx + d (a ≠ 0).

Lý thuyết Ôn tập chương I chi tiết – Toán lớp 12 (ảnh 1)

10.2. Hàm số y = ax4 + bx2 + c (a ≠ 0)

Ví dụ. Khảo sát sự biến thiên và vẽ đồ thị hàm số y = – x4  + 2x2 – 1.

Lời giải:

1. Tập xác định: R

2. Sự biến thiên

+ Chiều biến thiên;

Ta có: y’ = – 4x3 + 4x

y'  =0  x=0x=  ±1

Trên các khoảng (;  1) và (0; 1) thì y’ > 0 nên hàm số đồng biến.

Trên các khoảng (– 1; 0) và (1;  +) thì y’ < 0 nên hàm số nghịch biên.

+ Cực trị

Hàm số đạt cực tiểu tại điểm x = 0 và yCT = y(0) = – 1.

Hàm số đạt cực đại tại x = – 1 và x = 1; yCD = y(– 1)= y(1) = 0.

+ Giới hạn tại vô cực:

Lý thuyết Ôn tập chương I chi tiết – Toán lớp 12 (ảnh 1)

+ Bảng biến thiên:

Lý thuyết Ôn tập chương I chi tiết – Toán lớp 12 (ảnh 1)

3. Đồ thị

Hàm số đã cho là hàm số chẵn vì f(– x) = – (– x)+ 2(– x)2 – 1 = – x4  + 2x2 – 1 = f(x).

Do đó, hàm số nhận trục Ox làm trục đối xứng.

Đồ  thị cắt trục hoành tại các điểm (– 1; 0) và (1; 0) ; cắt trục tung tại điểm (0 ; –1).

 Lý thuyết Ôn tập chương I chi tiết – Toán lớp 12 (ảnh 1)

Dạng của đồ thị  y = ax4 + bx2 + c  (với a ≠ 0)

Lý thuyết Ôn tập chương I chi tiết – Toán lớp 12 (ảnh 1)

10.3. Hàm số y=  ax+​ bcx+​  d;  (c0;  adbc0).

Ví dụ. Khảo sát sự biến thiên và vẽ đồ thị hàm số y  =  2x+1x+​ 1.

Lời giải:

1. Tập xác định: R\ { – 1}.

2. Sự biến thiên

+ Chiều biến thiên: y'  =1(x+​ 1)2>0x1

Và y’ không xác định khi x = –1; y’ luôn luôn dương với mọi x khác – 1.

Vậy hàm số đồng biến trên các khoảng ;  1 và (1;  +).

+ Cực trị

Hàm số đã cho không có cực trị.

+ Tiệm cận limx1+2x+1x+ ​1  =  +;limx12x+ ​1x+ ​1  =  ;

Do đó, đường thẳng x = – 1 là đường tiệm cận đứng.

Lại có: limx+  2x+  1x+1=2;limx  2x+  1x+1=2

Suy ra, đồ thị có tiệm cận ngang là y = 2.

+ Bảng biến thiên:

Lý thuyết Ôn tập chương I chi tiết – Toán lớp 12 (ảnh 1)

3. Đồ thị

Đồ thị cắt trục tung tại điểm (0; 1); cắt trục hoành tại điểm 12;  0.

Lý thuyết Ôn tập chương I chi tiết – Toán lớp 12 (ảnh 1)

Lưu ý: Giao điểm của hai tiệm cận là tâm đối xứng của đồ thị.

Dạng của đồ thị hàm số y=  ax+​ bcx+​  d;  (c0;  adbc0)

Lý thuyết Ôn tập chương I chi tiết – Toán lớp 12 (ảnh 1)

11. Sự tương giao của các đồ thị.

Giả sử hàm số y = f(x) có đồ thị là (C1) và hàm số y = g(x) có đồ thị là (C2). Để tìm hoành độ giao điểm của (C1)và (C2), ta phải giải phương trình f(x) = g(x).

Giả sử phương trình trên có các nghiệm x0; x1; … khi đó, các giao điểm của (C1)và (C2) là M(x0; f(x0)); M(x1; f(x1))…..

Ví dụ. Tìm giao điểm của đồ thị (C): y = x3 – 3x2 + 3x + 2  và đường thẳng y = x + 2.

Lời giải:

Phương trình hoành độ giao điểm của hai đồ thị:

x3 – 3x2 + 3x + 2 = x + 2

x3 – 3x2 + 2x  = 0

x=0x=1x=2

Với x = 0 thì y(0) = 2;

Với x = 1 thì y(1) = 3.

Với x = 2 thì y(2) = 4.

Vây hai đồ thị đã cho cắt nhau tại 3 điểm là A(0; 2); B(1; 3) và C(2; 4).

Ví dụ. Cho hàm số y=2x1x1 có đồ thị  (C). Tìm m để đường thẳng d: y = – x + m cắt đồ thị  (C) tại hai điểm phân biệt.

Lời giải:

Phương trình hoành độ giao điểm của hai đồ thị: 

2x1x1  =x+ ​m(điều kiện x ≠ 1)

Suy ra: 2x – 1 = (x – 1) .(– x + m)

2x – 2 = – x2 + mx + x – m

x2 + (1 – m)x + m – 2 = 0  (*)

Để đường thẳng d cắt đồ thị (C) tại hai điểm phân biệt khi và chỉ khi phương trình  (*) có 2 nghiệm phân biệt khác 1.

Δ=(1m)24.1.(m2)>012  +(1m).1+m20m26m+​  9>00  0  (vli)

Vậy không có giá trị nào của m để d cắt (C ) tại hai điểm phân biệt.

B. Bài tập

I. Bài tập trắc nghiệm

Bài 1: Cho hàm số Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 và các mệnh đề sau

(1) Hàm số trên nhận điểm I(1;-1) làm tâm đối xứng,

(2) Hàm số trên nhận đường thẳng y = -x làm trục đối xứng.

(3) Hàm số trên nhận y = -1 là tiệm cận đứng.

(4) Hàm số trên luôn đồng biến trên R .

Trong số các mệnh đề trên, số mệnh đề sai là

A. 1    

B.2    

C.3    

D. 4

Lời giải:

+ Hàm số có tiệm cận đứng x=1 và tiệm cận ngang y= -1. Giao điểm của hai đường tiệm cận là I(1; -1) là tâm đối xứng của đồ thị. Mệnh đề 1 đúng, mệnh đề 3 sai.

+ Vì đường thẳng y=-x là một phân giác của góc tạo bởi 2 đường tiệm cận nên đường thẳng y=-x là một trục đối xứng của đồ thị hàm số. Mệnh đề 2 đúng.

+ Hàm số có tập xác định là R\{1}, nên hàm số không thể luôn đồng biến trên R.Mệnh đề 4 sai.

Bài 2: Trong các khẳng định sau về hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

khẳng định nào là đúng?

A. Hàm số có điểm cực tiểu là x = 0

B. Hàm số có hai điểm cực đại là x = ±1

C. Cả A và B đều đúng;

D. Cả A và B đều sai,

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lập bảng biến thiên, ta thấy hàm số có điểm cực tiểu là x = 0, có hai điểm cực đại là x = 1 và x = -1.

Bài 3: Trong các mệnh đề sau, hãy tìm mệnh đề sai:

A. Hàm số y = -x3 + 3x2 - 3 có cực đại và cực tiểu;

B. Hàm số y = x3 + 3x + 1 có cực trị;

C. Hàm số Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 không có cực trị;

D. Hàm số Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 đồng biến trên từng khoảng xác định.

Lời giải:

Xét hàm số y = x3 + 3x + 1 có: y' = 3x2 + 3

Phương trình y’ = 0 vô nghiệm. Do đó, hàm số này không có cực trị

⇔ mệnh đề B sai .

Bài 4: Lưu lượng xe vào hầm cho bởi công thức

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

trong đó v (km/h) là vận tốc trung bình của các xe khi vào hầm. Với giá trị xấp xỉ nào của v thì lưu lượng xe là lớn nhất?

A. 26    

B.27    

C. 28    

D. 29

Lời giải:

Xét

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Hàm số đạt giá trị lớn nhất tại v ≈ 27 .

Bài 5: Đồ thị hàm số nào sau đây có hình dạng như hình bên?

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

A. y = x3 + 3x + 1

B. y = x3 - 3x + 1

C. y = -x3 - 3x + 1

D. y = - x3 + 3x + 1

Lời giải:

Dựa vào hình vẽ ta suy ra, hàm số đã cho là hàm số bậc ba có hệ số a > 0 và hàm số không có điểm cực trị.

⇒ Loại C và D.

* Xét phương án A y = x3 + 3x + 1

có y' = 3x2 + 3 nên hàm số không có cực trị.

⇒ A thỏa mãn

* xét phương án B: y = x3 - 3x + 1 có y' = 3x2 - 3; y' = 0 ⇔ x = ±1

Và y’ đổi dấu khi qua 2 điểm 1; -1 . Do đó, hàm số này có 2 điểm cực trị.

⇒ Loại B

Bài 6: Số đường tiệm cận của đồ thị hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

A. 3    

B.2    

C. 1   

D.4

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Suy ra, hàm số có tiệm cận đứng x = ±2.

Vậy đồ thị hàm số đã cho có tất cả 3 đường tiệm cận.

Bài 7: Gọi M và m tương ứng là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = 2sin2x - cosx + 1 thì M.m bằng

A. 0    

B. 258    

C. 254    

D. 2

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 8: Hàm số nào sau đây là hàm số đồng biến trên R

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

* Xét phương án A: y = (x2 - 1)2 - 3x + 2

y'=2(x2-1).2x - 3 = 4x3 - 4x - 3

Và y’ > 0 không đúng với ∀ x ∈ R

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Do đó, hàm số này đồng biến trên R.

Chọn B.

* Phương án C và D, hàm số có tập xác định không phải là R nên hàm số không thể đồng biến trên R.

Bài 9: Cho hàm số y = - x3 + 3x2 - 3x + 1, mệnh đề nào sau đây là đúng?

A. Hàm số luôn nghịch biến.

B. Hàm số luôn đồng biến

C. Hàm số đạt cực đại tại x = 1

D. Hàm số đạt cực tiểu tại x = 1

Lời giải:

y' = -3x2 + 6x - 3 = -3(x2 - 2x + 1) = -3(x - 1)2 ≤ 0 ∀x ∈ R. Hàm số luôn nghịch biến.

Bài 10: Hàm số:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

là hàm hằng trên khoảng nào sau đây?

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Điều kiện:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Hàm số là hàm hằng x ≠ π +2kπ (k ∈ Z)

Do đó, hàm số đã cho cũng là hàm hằng trên khoảng (0; π).

II. Bài tập tự luận có lời giải

Bài 1: Cho hàm số y = x2 - 2|x| + 2 và các mệnh đề

(1) Hàm số trên liên tục trên R

(2) Hàm số trên có đạo hàm tại x = 0

(3) Hàm số trên đạt GTNN tại x = 0.

(4) Hàm số trên đạt GTLN tại x = 0.

(5) Hàm số trên là hàm chẵn

(6) Hàm số trên cắt trục hoành tại duy nhất một điểm

Trong các mệnh đề trên, số mệnh đề đúng là

Lời giải:

* Hàm số đã cho liên tục trên R vì với Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 nên (1) đúng

* Tại điểm x = 0 hàm số không có đạo hàm nên (2) sai.

*y = x2 - 2|x| + 2 = |x|2 - 2|x| + 2 = (|x| - 1)2 + 1 ≥ 1 ∀ x

Suy ra, GTNN của hàm số là 1 khi |x| = 1 ⇔ x = ±1

nên hàm số không có GTLN.

* Phương trình x2 - 2|x| + 2=0 vô nghiệm nên đồ thị không cắt trục hoành.

f(-x)=(-x)2 - 2|-x| + 2 = x2 - 2|x| + 2 = f(x)

Nên hàm số đã cho là hàm số chẵn.

Mệnh đề 1, 5 đúng. Mệnh đề 2, 3,4,6 sai.

Bài 2: Hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

đồng biến trên từng khoảng xác định của nó khi:

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Để hàm số tăng trên từng khoảng xác định thì y’ > 0 <=> m > 0.

Bài 3: Trong các tiếp tuyến tại các điểm trên đồ thị hàm số y = x3 - 3x2 + 2, tiếp tuyến có hệ số góc nhỏ nhất bằng:

Lời giải:

Tiếp tuyến của đồ thị hàm số có hệ số góc là

k = y' = 3x2 - 6x = (3x2 - 6x + 3) - 3 = 3(x - 1)2 - 3 ≥ -3 ∀x ∈ R

Trong các tiếp tuyến tại các điểm trên đồ thị hàm số, tiếp tuyến có hệ số góc nhỏ nhất bằng -3.

Bài 4: Hàm số nào sau đây có bảng biến thiên như hình bên?

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

* Đồ thị hàm số đã cho có TCĐ là x =2, TCN là y = 2.

Hàm số nghịch biến trên TXĐ.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 5: Hàm số y = x3 - 3x2 + mx đạt cực tiểu tại x = 2 khi?

Lời giải:

Hàm số y = x3 - 3x2 + mx đạt cực tiểu tại x = 2 khi và chỉ khi:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 6: Hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 đồng biến trên tập xác định của nó khi:

Lời giải:

Hàm số  y'=x2 + 2(m + 1)x - m - 1

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

có tập xác định: D = R.

Để hàm số đã cho đồng biến trên R khi và chỉ khi:

y' = f(x) = x2 + 2(m + 1)x - m - 1 ≥ 0 ∀ x ∈ R

⇔ Δ' = (m + m + 1 = m2 + 3m + 2 ≤ 0

⇔ -2 ≤ m ≤ -1

Bài 7: Cho đồ thị hàm số y = x3 - 2x2 + 2x (C). Gọi x1,x2 là hoành độ các điểm M, N trên (C), mà tại đó tiếp tuyến của (C) vuông góc với đường thẳng y = -x + 2017 . Khi đó (x1, x2) bằng

Lời giải:

Tiếp tuyến của C vuông góc với đường thẳng y= -x + 2017 nên hệ số góc của tiếp tuyến là k2 thỏa mãn (-1)k2 = -1 => k2 = 1

Suy ra k2 = y' = 1 => 3x2 - 4x + 2 <=> 3x2 - 4x + 2 = 0 (*)

Vì x1, x2 là nghiệm của (*) nên áp dụng Vi-ét ta có x1 + x2 = 43

Bài 8: Một ngọn hải đăng đặt trại vị trí A cách bờbiển một khoảng AB = 5km. Trên bờ biển có một kho vị trí C cách B một khoảng là 7km. Do địa hình hiểm trở, người canh hải đăng chỉ có thể chèo thuyền từ A đến M trên bờ biển với vận tốc 4km/h rồi đi bộ đến C, với vận tốc 6km/h. Vậy vị trí M cách B một khoảng bao xa thì người đó đến kho là nhanh nhất?

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Đặt BM = x (0 ≤ x ≤ 7) => MC = 7 - x. Áp dụng định lí Py-ta-go cho tam giác vuông ABM có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Thời gian đi từ A đến M là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

thời gian đi từ M đến C là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Tổng thời gian đi từ A đến C là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bảng biến thiên

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Để người đó đến kho nhanh nhất thì thời gian đi cần ít nhất, tức t đạt giá trị nhỏ nhất. Dựa vào bảng biến thiên ta thấy t đạt giá trị nhỏ nhất tại x = 25 ≈ 4,5

Vậy vị trí điểm M cách B một khoảng là 4,5km thì người đó đến kho là nhanh nhất.

Bài 9: Cho hàm số y = -x2 - 4x + 3 có đồ thị (C). Nếu tiếp tuyến tại M của (C) có hệ số góc bằng 8 thì hoành độ điểm M là:

Lời giải:

Đạo hàm y’ = -2x - 4 = 8

Hệ số góc tại điểm có hoành độ x0 là: k = y'(x0) = -2x0 - 4

Để k = 8 thì -2x0 - 4 = 8 ⇔ x0 = -6

Vậy nếu tiếp tuyến tại M của (C) có hệ số góc bằng 8 thì hoành độ điểm M là -6.

Bài 10: Cho hàm số y = -x4 + 2x2 - 1. Số giao điểm của đồ thị hàm số với trục Ox là:

Lời giải:

Phương trình hoành độ giao điểm của đồ thị hàm số và trục hoành là:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Số giao điểm của đồ thị hàm số với trục Ox là hai điểm.

III. Bài tập vận dụng

Bài 1 Cho hàm số y = 3sinx - 4sin3x. Giá trị lớn nhất của hàm số trên khoảng (-π2 ; π2) bằng?

Bài 2 Cho hàm số y = x3 - 3x2 + 1. Tích các giá trị cực đại và giá trị cực tiểu của hàm số bằng?

Bài 3 Số đường thẳng đi qua điểm A(0; 3) và tiếp xúc với đồ thị hàm số y = x4 - 2x2 + 3 là?

Bài 4 Thể tích V của 1kg nước ở nhiệt độ T(0o ≤ T ≤ 30o) được cho bởi công thức V = 999,87 - 0,06426T + 0,0085043T2 - 0,0000679T3. Ở nhiệt độ xấp xỉ bao nhiêu thì nước có khối lượng riêng lớn nhất?

Bài 5 Cho hàm số y = -x2 - 4x + 3 có đồ thị (C). Nếu tiếp tuyến tại M của (C) có hệ số góc bằng 8 thì hoành độ điểm M là?

Bài 6 Cho hàm số y = -x4 + 2x2 - 1. Số giao điểm của đồ thị hàm số với trục Ox là?

Bài 7 Cho hàm số y = 3sinx - 4sin3x. Giá trị lớn nhất của hàm số trên khoảng (-π2; π2) bằng?

Bài 8 Cho hàm số y = x3 - 3x2 + 1. Tích các giá trị cực đại và giá trị cực tiểu của hàm số bằng?

Bài 9 Thể tích V của 1kg nước ở nhiệt độ T(0o ≤ T ≤ 30o) được cho bởi công thức V = 999,87 - 0,06426T + 0,0085043T2 - 0,0000679T3. Ở nhiệt độ xấp xỉ bao nhiêu thì nước có khối lượng riêng lớn nhất?

Bài 10 Hàm số Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 đồng biến trên tập xác định của nó khi?

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá