Phép chia số phức: Lý thuyết, cách giải và bài tập hay, chi tiết

337

Toptailieu.vn biên soạn và giới thiệu Chuyên đề Phương trình bậc hai với hệ số thực gồm đầy đủ các phần: Lý thuyết, phương pháp giải, bài tập minh họa có lời giải chi tiết giúp học sinh làm tốt bài tập Toán 12 từ đó học tốt môn Toán. Mời các bạn đón xem:

Phép chia số phức: Lý thuyết, cách giải và bài tập hay, chi tiết

A. Lý thuyết

1. Tổng và tích của hai số phức liên hợp

Cho số phức z = a + bi, ta có:

z+​  z¯  = (a + bi) + (a – bi) = 2a;

z.​  z¯   = (a + bi). (a – bi) = a2 – (bi)2 = a2 + b2 =z2

Do đó:

+ Tổng của một số phức với số phức liên hợp của nó bằng hai lần phần thực của số phức đó.

+ Tích của một số phức với số phức liên hợp của nó bằng bình phương môđun của số phức đó.

Vậy tổng và tích của hai số phức liên hợp là một số thực.

2. Phép chia hai số phức

Chia số phức c + di cho số phức a + bi khác 0 là tìm số phức z sao cho

 c + di = (a + bi).z. Số phức z được gọi là thương trong phép chia c + di cho a + bi và kí hiệu là: z  =  c+dia+​  bi.

Ví dụ 1. Thực hiện phép chia 4 – 6i cho 1 + i.

Lời giải:

QUẢNG CÁO

Giả sử z=  46i1+  i

Theo định nghĩa ta có: (1 + i).z = 4 – 6i.

Nhân cả hai vế với số phức liên hợp của 1 + i ta được:

(1 – i) .(1 + i).z = (1 – i).(4 – 6i)

Suy ra: 2z = – 2 – 10i

Do đó, z = –1 – 5i

Vậy 46i1+i  =  15i.

– Tổng quát:

Giả sử z=  c+  dia+  bi. Theo định nghĩa phép chia số phức, ta có:

(a + bi).z = c + di

Nhân cả hai vế với số phức liên hợp của a + bi, ta được:

(a – bi)(a + bi).z = (a – bi)(c + di)

Hay (a2 + b2).z = (ac + bd) + (ad – bc).i

Lý thuyết Phép chia số phức chi tiết – Toán lớp 12 (ảnh 1)

– Chú ý. Trong thực hành để tính thương c+dia+bi, ta nhân cả tử và mẫu với số phức liên hợp của a + bi.

Ví dụ 2. Thực hiện phép chia 2 – 4i cho 2 + i.

Lời giải:

Lý thuyết Phép chia số phức chi tiết – Toán lớp 12 (ảnh 1)

B. Bài tập

I. Bài tập trắc nghiệm

Bài 1: Các số thực x, y thỏa mãn

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Khi đó, tổng T = x + y bằng

A. 4   

B.5    

C. 6    

D. 7.

Lời giải:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy T = -2 + 8 = 6

Bài 2: Cho số phức z thỏa mãn (3 + 2i)z + (2 - i)2 = 4 + i. Môđun của số phức w = (z + 1)z− là

A. 2    

B. 4   

C. 10    

D. 10

Lời giải:

Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 3: Cho số phức z thỏa mãn Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 Môđun của số phức w = z + i + 1 là

A. 3    

B. 4   

C. 5   

D. 6.

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 4: Nghịch đảo của số phức z = 1 - 2i là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án D.

Bài 5: Số phức

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

A. -1+i   

B.1-i    

C. -1-i   

D. 1+5i.

Lời giải:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án A.

Bài 6: Số phức z thỏa mãn z(1 + 2i) + 1 - i = 2i là

A. -1+i   

B. 1-i   

C. 1+i   

D. -1-i.

Lời giải:

Ta có:z(1 + 2i) + 1 - i = 2i là <=> z(1 + 2i) = -1 + 3i

Do đó:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án C.

Bài 7: Nghịch đảo của số phức z = 1 + i là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Nghịch đảo của số phức z = 1 + i là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 8: Phần thực và phần ảo của số phức

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

A. 0 và 1   

B. 0 và i   

C. 0 và -1   

D. 0 và – i.

Lời giải:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy phần thực và phần ảo của z là 0 và -1

Bài 9: Cho số phức

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Phần thực và phần ảo của số phức w = (z + 1)(z + 2) là

A. 2 và 1   

B. 1 và 3   

C. 2 và i   

D. 1 và 3i.

Lời giải:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Suy ra w = (z + 1)(z + 2) = (i + 1)(i + 2) = -1 + 2i + i + 2 = 1 + 3i

Vậy phần thực và phần ảo của w là 1 và 3

Bài 10: Số phức

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

II. Bài tập tự luận có lời giải

Bài 1: Cho số phức z thỏa mãn (2 + 3i)z = 1 Khi đó, z + 2z bằng

Lời giải:

Ta có: (2 + 3i)z = 1 - 5i. Do đó

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

⇒ z− = -1 + i

Bài 2: Nghịch đảo của số phức z = 1 - 2i là?

Lời giải:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 3: Số phức

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 4: Số phức z thỏa mãn z(1 + 2i) + 1 - i = 2i là

Lời giải:

Ta có:z(1 + 2i) + 1 - i = 2i là <=> z(1 + 2i) = -1 + 3i

Do đó:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 5: Nghịch đảo của số phức z = 1 + i là?

Lời giải:

Nghịch đảo của số phức z = 1 + i là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 6: Phần thực và phần ảo của số phức

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy phần thực và phần ảo của z là 0 và -1

Câu 7: Cho số phức

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Phần thực và phần ảo của số phức w = (z + 1)(z + 2) là

Lời giải:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Suy ra w = (z + 1)(z + 2) = (i + 1)(i + 2) = -1 + 2i + i + 2 = 1 + 3i

Vậy phần thực và phần ảo của w là 1 và 3

Câu 8: Số phức

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 9: Cho số phức z thỏa mãn (2 + 3i)z = 1 Khi đó, z− + 2z bằng

Lời giải:

Ta có: (2 + 3i)z = 1 - 5i. Do đó

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

⇒ z− = -1 + i

Câu 10: Các số thực x, y thỏa mãn

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Khi đó, tổng T = x + y bằng?

Lời giải:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy T = -2 + 8 = 6

III. Bài tập vận dụng

Bài 1 Cho số phức z thỏa mãn Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 Môđun của số phức w = z + i + 1 là?

Bài 2 Cho số phức z thỏa mãn (3 + 2i)z + (2 - i)2 = 4 + i. Môđun của số phức w = (z + 1)z là?

Bài 3 Cho số phức z thỏa mãn (2 + 3i)z = 1 Khi đó, z + 2z bằng?

Bài 4 Cho z = 2 + 3i. Hãy tính z + u và z.u. Nêu nhận xét.

Bài 5 Thực hiện các phép chia sau:

Giải bài tập Toán 12 | Giải Toán lớp 12

Bài 5 Thực hiện các phép chia sau:

Giải bài 1 trang 138 sgk Giải tích 12 | Để học tốt Toán 12

Bài 6 Tìm nghịch đảo của z là:

a) z = 1 + 2i

b) z = 2 - 3i

c) z = i

d) z = 5 + i3

Bài 7 Thực hiện các phép tính sau:

Giải bài 3 trang 138 sgk Giải tích 12 | Để học tốt Toán 12

Bài 8 Giải các phương trình sau:

Giải bài 4 trang 138 sgk Giải tích 12 | Để học tốt Toán 12

Bài 9 Số phức Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải có phần thực là?

Bài 10 Nghịch đảo của số phức z = 1 + i là?

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá