Ôn tập chương 1: Lý thuyết, cách giải và bài tập hay, chi tiết

303

Toptailieu.vn biên soạn và giới thiệu Chuyên đề Ôn tập chương 1 gồm đầy đủ các phần: Lý thuyết, phương pháp giải, bài tập minh họa có lời giải chi tiết giúp học sinh làm tốt bài tập Toán 12 từ đó học tốt môn Toán. Mời các bạn đón xem:

Ôn tập chương 1: Lý thuyết, cách giải và bài tập hay, chi tiết

A. Lý thuyết

1. Khối lăng trụ và khối chóp.

- Khối chóp là phần không gian được giới hạn bởi một hình chóp kể cả hình chóp ấy.

Khối chóp cụt là phần không gian được giới hạn bởi một hình chóp cụt kể cả hình chóp cụt ấy.

- Khối lăng trụ là phần không gian được giới hạn bởi một hình lăng trụ kể cả hình lăng trụ ấy.

- Tên của khối lăng trụ hay khối chóp được đặt theo tên của hình lăng trụ hay hình chóp giới hạn nó.

Ví dụ. Ứng với hình lăng trụ tứ giác ABCD.EFGH ta có khối lăng trụ tứ giác ABCD.EFGH; ứng với hình chóp tứ giác S.ABCD ta có khối chóp tứ giác S.ABCD.

Lý thuyết Ôn tập chương 1 chi tiết – Toán lớp 12 (ảnh 1)Lý thuyết Ôn tập chương 1 chi tiết – Toán lớp 12 (ảnh 1)

- Ta gọi đỉnh, cạnh, mặt, mặt bên, mặt đáy, cạnh đáy, cạnh bên… của một hình lăng trụ (hình chóp hay hình chóp cụt) theo thứ tự là đỉnh; cạnh, mặt, mặt bên, mặt đáy, cạnh đáy, cạnh bên… của khối lăng trụ (khối chóp hay khối chóp cụt) tương ứng.

- Điểm không thuộc khối lăng trụ được gọi là điểm ngoài của khối lăng trụ, điểm thuộc khối lăng trụ nhưng không thuộc hình lăng trụ ứng với khối lăng trụ đó được gọi là điểm trong của khối lăng trụ. Điểm trong hay điểm ngoài của khối chóp, khối chóp cụt cũng được định nghĩa tương tự.

2. Khái niệm về hình đa diện và khối đa diện

2.1 Khái niệm về hình đa diện

Hình đa diện (gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác thỏa mãn hai tính chất sau:

a) Hai đa giác phân biệt chỉ có thể hoặc không có điểm chung, hoặc chỉ có một đỉnh chung, hoặc chỉ có một cạnh chung.

 

b) Mỗi cạnh của đa giác nào cũng là cạnh chung của đúng hai đa giác.

- Các đỉnh, cạnh của các đa giác ấy theo thứ tự gọi là đỉnh, cạnh của hình đa diện.

Lý thuyết Ôn tập chương 1 chi tiết – Toán lớp 12 (ảnh 1)

2.2 Khái niệm về khối đa diện

Khối đa diện là phần không gian được giới hạn bởi một hình đa diện, kể cả hình đa diện đó.

- Những điểm không thuộc khối đa diện được gọi là điểm ngoài của khối đa diện. Những điểm thuộc khối đa diện nhưng không thuộc hình đa diện giới hạn khối đa diện ấy được gọi là điểm trong của khối đa diện.

Tập hợp các điểm trong được gọi là miền trong, tập hợp các điểm ngoài được gọi là miền ngoài của khối đa diện.

- Mỗi hình đa diện chia các điểm còn lại của không gian thành hai miền không giao nhau là miền trong và miền ngoài của hình đa diện, trong đó chỉ có miền ngoài là chứa hoàn toàn một đường thẳng nào đấy.

Lý thuyết Ôn tập chương 1 chi tiết – Toán lớp 12 (ảnh 1)

Ví dụ.

- Các hình dưới đây là những khối đa diện

Lý thuyết Ôn tập chương 1 chi tiết – Toán lớp 12 (ảnh 1)

- Các hình dưới đây không phải là những khối đa diện.

Lý thuyết Ôn tập chương 1 chi tiết – Toán lớp 12 (ảnh 1)

3. Hai đa diện bằng nhau.

3.1 Phép dời hình trong không gian.

- Trong không gian, quy tắc đặt tương ứng mỗi điểm M với điểm M’ xác định duy nhất được gọi là một phép biến hình trong không gian.

- Phép biến hình trong không gian được gọi là phép dời hình nếu nó bảo toàn khoảng cách giữa hai điểm tùy ý.

- Ví dụ. Trong không gian, các phép biến hình sau đây gọi là phép dời hình :

a) Phép tịnh tiến theo vectơ v, là phép biến hình, biến mỗi điểm M thành điểm M’ sao cho MM'  =v.

Lý thuyết Ôn tập chương 1 chi tiết – Toán lớp 12 (ảnh 1)

b) Phép đối xứng qua mặt phẳng (P), là phép biến hình biến mỗi điểm thuộc (P) thành chính nó, biến mỗi điểm M không thuộc (P) thành điểm M’ sao cho (P) là mặt phẳng trung trực của MM’.

Nếu phép đối xứng qua mặt phẳng (P) biến hình (H) thành chính nó thì (P) được gọi là mặt phẳng đối xứng của (H).

Lý thuyết Ôn tập chương 1 chi tiết – Toán lớp 12 (ảnh 1)

c) Phép đối xứng tâm O, là phép biến hình biến điểm O thành chính nó, biến mỗi điểm M khác O thành điểm M’ sao cho O là trung điểm của MM’.

Nếu phép đối xứng tâm O biến hình (H) thành chính nó thì O được gọi là tâm đối xứng của (H).

Lý thuyết Ôn tập chương 1 chi tiết – Toán lớp 12 (ảnh 1)

d) Phép đối xứng qua đường thẳng ∆ (hay phép đối xứng qua trục ∆) là phép biến hình biến mọi điểm thuộc đường thẳng ∆ thành chính nó, biến mỗi điểm M không thuộc ∆ thành điểm M’ sao cho ∆ là đường trung trực của MM’.

Nếu phép đối xứng qua đường thẳng ∆ biến hình (H) thành chính nó thì ∆ gọi là trục đối xứng của (H) .

Nhận xét:

+ Thực hiện liên tiếp các phép dời hình sẽ được một phép dời hình.

+ Phép dời hình biến đa diện (H) thành đa diện (H’), biến đỉnh, cạnh, mặt của (H) thành đỉnh, cạnh, mặt tương ứng của (H’).

3.2 Hai hình bằng nhau

- Hai hình được gọi là bằng nhau nếu có một phép dời hình biến hình này thành hình kia.

Đặc biệt, hai đa diện được gọi là bằng nhau nếu có một phép dời hình biến đa diện này thành đa diện kia.

Ví dụ. Phép đối xứng tâm O biến đa diện (H) thành đa diện (H’). Phép đối xứng trục ∆, biến đa diện (H’) thành đa diện (H”). Do đó, phép dời hình có được bằng cách thực hiện liên tiếp hai phép dời hình trên biến hình (H) thành hình (H”) .

Từ đó, suy ra các hình (H); (H’) và (H”) là bằng nhau.

4. Phân chia và lắp ghép các khối đa diện

Nếu khối đa diện (H) là hợp của hai khối đa diện (H1) và (H2) sao cho (H1) và (H2) không có chung điểm trong nào thì ta nói có thể chia được khối đa diện (H) thành hai khối đa diện (H1) và (H2), hay có thể lắp ghép hai khối đa diện (H1) và (H2) với nhau để được khối đa diện (H).

Ví dụ. Với khối chóp tứ giác S.ABCD, ta hãy xét hai khối chóp tam giác S.ABC và S.ACD.

Lý thuyết Ôn tập chương 1 chi tiết – Toán lớp 12 (ảnh 1)

Ta thấy rằng:

+ Hai khối chóp S.ABC và S.ACD không có điểm trong chung.

+ Hợp của hai khối chóp S.ABC và S.ACD chính là khối chóp S.ABCD.

Vậy khối chóp S.ABCD được phân chia thành hai khối chóp tam giác là S.ABC và  S.ACD .

- Nhận xét. Một khối đa diện bất kì luôn có thể phân chia thành những khối tứ diện.

5. Khối đa diện lồi.

Khối đa diện lồi (H) được gọi là khối đa diện lồi nếu đoạn thẳng nối hai điểm bất kì của (H) luôn thuộc (H). Khi đó đa diện xác định (H) được gọi là đa diện lồi.

Ví dụ. Các khối chóp tam giác, tứ giác, các khối lăng trụ tam giác, khối lăng trụ tứ giác… đều là những khối đa diện đều.

- Người ta chứng minh được rằng, một khối đa diện là khối đa diện lồi khi và chỉ khi miềm trong của nó luôn nằm về một phía đối với mỗi mặt phẳng chứa một mặt của nó.

6. Khối đa diện đều.

Định nghĩa: Khối đa diện đều là khối đa diện lồi có tính chất sau đây:

a) Mỗi mặt của nó là một đa giác đều p cạnh.

b) Mỗi đỉnh của nó là đỉnh chung của đúng q mặt.

Khối đa diện đều như vậy được gọi là khối đa diện đều loại {p; q}.

Từ định nghĩa trên ta thấy các mặt của khối đa diện đều là những đa giác đều bằng nhau.

- Định lí: Chỉ có năm loại khối đa diện đều. Đó là các loại {3; 3}; loại {4; 3}; loại {3; 4}; loại {5; 3} và loại {3; 5}.

Tùy theo số mặt của chúng, năm loại khối đa diện đều kể trên theo thứ tự gọi là các khối tứ diện đều, khối lập phương, khối bát diện đều (hay khối tám mặt đều), khối mười hai mặt đều và khối hai mươi mặt đều.

Lý thuyết Ôn tập chương 1 chi tiết – Toán lớp 12 (ảnh 1)Lý thuyết Ôn tập chương 1 chi tiết – Toán lớp 12 (ảnh 1)

Bảng tóm tắt của năm loại khối đa diện đều.

Lý thuyết Ôn tập chương 1 chi tiết – Toán lớp 12 (ảnh 1)

Ví dụ. Chứng minh rằng nếu khối đa diện có các mặt là những tam giác thì tổng các mặt của nó phải là một số chẵn.

Lời giải:

Gọi số cạnh và số mặt của đa diện lần lượt là c và m .

Vì mỗi mặt có ba cạnh và mỗi cạnh là cạnh chung của đúng hai mặt nên ta có số cạnh của đa diện là c=3m23m=2c

Do đó, 3m chia hết cho 2 mà 3 không chia hết cho 2 nên m phải chia hết cho 2, nghĩa là m là số chẵn.

Vậy nếu khối đa diện có các mặt là những tam giác thì tổng các mặt của nó phải là một số chẵn.

7. Khái niệm về thể tích của khối đa diện

Người ta chứng minh được rằng: có thể đặt tương ứng cho mỗi khối đa diện (H) một số dương duy nhất V(H) thỏa mãn các tính chất sau:

a) Nếu (H) là khối lập phương có cạnh bằng 1 thì V(H) = 1.

b) Nếu hai khối đa diện (H1) và (H2) bằng nhau thì V(H1) = V(H2).

c) Nếu khối đa diện (H) được phân chia thành hai khối đa diện (H1) và (H2) thì:

V(H) = V(H1) + V(H2).

Số dương V(H) nói trên được gọi là thể tích của khối đa diện (H). Số đó cũng được gọi là thể tích của hình đa diện giới hạn khối đa diện (H).

Khối lập phương có cạnh bằng 1 được gọi là khối lập phương đơn vị.

- Định lí : Thể tích của khối hình chữ nhật bằng tích ba kích thước của nó.

8. Thể tích của khối lăng trụ.

Định lí: Thể tích khối lăng trụ có diện tích đáy B và chiều cao h là: V = B.h

Ví dụ. Đáy của lăng trụ đứng tam giác ABC.A’B’C’ là tam giác đều cạnh a = 4 và biết diện tích tam giác A’BC bằng 8. Tính thể tích khối lăng trụ.

Lời giải:

Lý thuyết Ôn tập chương 1 chi tiết – Toán lớp 12 (ảnh 1)

Lý thuyết Ôn tập chương 1 chi tiết – Toán lớp 12 (ảnh 1)

9. Thể tích khối chóp.

Định lí. Thể tích khối chóp có diện tích đáy B và chiều cao h là: V=13B.h.

Ví dụ. Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a biết  SA vuông góc với đáy ABC và (SBC) hợp với đáy (ABC) một góc 60o. Tính thể tích hình chóp.

Lời giải:

Lý thuyết Ôn tập chương 1 chi tiết – Toán lớp 12 (ảnh 1)

Lý thuyết Ôn tập chương 1 chi tiết – Toán lớp 12 (ảnh 1)

B. Bài tập

I. Bài tập trắc nghiệm

Câu 1: Cho khối chóp S.ABC có đáy ABC là tam giác đều cạnh a, các cạnh bên bằng 2a. Gọi M là trung điểm SB, N là điểm trên cạnh SC sao cho SN = 3NC. Thể tích khối chóp A.BCNM có giá trị nào sau đây?

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Lời giải:

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Câu 2: Cho hình chóp S.ABC có SA = SB = SC = A2 và đáy là tam giác ABC cân tại A. Biết Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12 và BC = 2a. Thể tích khối chóp S.ABC là

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Lời giải:

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Đáp án C

Gọi H là tâm đường tròn ngoại tiếp tam giác ABC bằng cách dựng như hình vẽ.

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Câu 3: Lăng trụ đứng ABCD.A’B’C’D’ có đáy ABCD là hình vuông cạnh a và đường chéo BD’ của lăng trụ hợp với đáy ABCD một góc 30º. Thể tích của lăng trụ là:

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Lời giải:

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Câu 4: Cho hình chóp S.ABC có (SAB),(SAC) cùng vuông góc với mặt phẳng đáy, cạnh bên SB tạo với đáy một góc 60° đáy ABC là tam giác vuông cân tại B với BA = BC = a. Gọi M, N lần lượt là trung điểm của SB, SC. Tính thể tích của khối đa diện A.BMNC

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Lời giải:

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Câu 5: Trong các mệnh đề sau đây, mệnh đề nào đúng?

A. Hai khối đa diện có thể tích bằng nhau thì bằng nhau

B. Hai khối chóp có hai đáy là hai tam giác đều bằng nhau thì thể tích bằng nhau

C. Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau

D. Hai khối đa diện bằng nhau có thể tích bằng nhau

Lời giải:

Đáp án D

Phương án A. Sai: Xem lại định nghĩa

“Hai đa diện được gọi là bằng nhau nếu có 1 phép dời hình biến đa diện này thành đa diện kia”.

Phương án B. Sai vì Vchóp = 13 hSđáy nên hai chóp có thể tích bằng nhau thì cần thêm điều kiện đường cao bằng nhau.

Phương án C. Sai Vlăng trụ = h.Sđáy

Thiếu điều kiện hai đáy có diện tích bằng nhau.

Phương án D. Đúng. Vì hai khối đa diện bằng nhau được tạo thành từ một phép dời hình, nó bảo toàn khoảng cách giữa các điểm. Do đó thể tích của chúng bằng nhau.

Câu 6: Trong các mệnh đề sau đây mệnh đề nào đúng?

A. Tồn tại các khối đa diện đều loại (5;3)

B. Tồn tại các khối đa diện đều loại (5;4)

C. Tồn tại các khối đa diện đều loại (5;5)

D. Tồn tại các khối đa diện đều loại (4;5)

Lời giải:

Tồn tại các khối đa diện đều loại (5;3) gọi là khối mười hai mặt đều.

Câu 7: Mỗi cạnh của một khối đa diện là cạnh chung của bao nhiêu mặt của khối đa diện:

A. Hai mặt

B. Ba mặt

C. Bốn mặt

D. Năm mặt

Lời giải:

Mỗi cạnh của đa giác nào cũng là cạnh chung của đúng 2 đa giác

Câu 8: Trong các mệnh đề sau mệnh đề nào sai:

A. Hình lăng trụ đều có cạnh bên vuông góc với đáy.

B. Hình lăng trụ đều có các mặt bên là các hình chữ nhật.

C. Hình lăng trụ đều có các cạnh bên bằng đường cao của lăng trụ.

D. Hình lăng trụ đều có tất cả các cạnh đều bằng nhau

Lời giải:

Đáp án D

Phương án A. Đúng: Vì hình lăng trụ đều là hình lăng trụ đứng có đáy là đa giác đều nên lăng trụ đều có cạnh bên vuông góc với đáy.

Phương án B. Đúng.

Phương án C. Đúng.

Phương án D. Sai: Do lăng trụ đều có cạnh đáy và chiều cạnh bên có thể không bằng nhau.

Câu 9: Mỗi hình dưới đây gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó).

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Số đa diện lồi trong các hình vẽ trên là:

A. 1

B. 2

C. 3

D. 4

Lời giải:

Hai đa diện lồi là hình 1 và 4.

Câu 10: Cho khối chóp S.ABC có SA = 9, SB = 4, SC = 8 và đôi một vuông góc. Các điểm A', B', C' thỏa mãn SA = 2SA'SB=3SB'SC=4SC'. Thể tích khối chóp S.A'B'C' là:

A. 24

B. 16

C. 2

D. 12

Lời giải:

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

II. Bài tập tự luận có lời giải

Câu 1: Cho hình chóp S.ABC có đáy là tam giác vuông tại A, các cạnh AB = 1, AC = 2. Các tam giác SAB và SAC lần lượt vuông tại B và C. Góc giữa (SBC) và mặt phẳng đáy bằng 60° . Tính thể tích của khối chóp đã cho.

Lời giải:

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Câu 2: Cho khối chóp tứ giác đều S.ABCD có cạnh bằng a, cạnh bên SC tạo với mặt đáy một góc 45°. Tính thể tích của khối & chóp S. ABCD

Lời giải:

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Câu 3: Tính thể tích của hình hộp ABCD.A'B'C'D' biết rằng AA'B'D' là tứ diện đều cạnh bằng a.

Lời giải:

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Câu 4: Cho hình chóp tam giác đều cạnh bằng 3. Tính thể tích hình chóp đó biết chiều cao h = 7

Lời giải:

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Câu 5: Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, SA = 2a và SA vuông góc với mặt phẳng (ABC). Gọi M và N lần lượt là hình chiếu vuông góc của A trên các đường thẳng SB và SC. Thể tích V của khối chóp A.BCNM bằng

Lời giải:

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Câu 6: Cho tứ diện ABCD. Gọi B’ và C’ lần lượt là trung điểm của AB và AC. Khi đó tỉ số thể tích của khối tứ điện AB’C’D và khối tứ diện ABCD bằng:

Lời giải:

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Câu 7: Kim tự tháp Kê-ốp ở Ai Cập được xây dựng vào khoảng 2500 năm trước công nguyên. Kim tự tháp này là một hình chóp tứ giác đều có chiều cao là 147m, cạnh đáy dài 230m. Tính thể tích của nó

Lời giải:

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Câu 8: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và thể tích V = 12 cm3. Mặt bên SAB là tam giác đều cạnh bằng 4cm. Tính khoảng cách từ C đến mặt phẳng (SAB).

Lời giải:

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Câu 9: Cho hình chóp S.ABC có tam giác ABC vuông tại A, BC = 2a; Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12. Mặt phẳng (SAB) vuông góc với mặt phẳng (ABC), tam giác SAB cân tại S, tam giác SBC vuông tại S. Thể tích khối chóp S.ABC là:

Lời giải:

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Câu 10: Cho hình chóp S.ABCD có đáy là hình vuông, gọi M là trung điểm của AB. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Biết SD = a3, SC tạo với mặt phẳng đáy (ABCD) một góc 60°. Thể tích khối chóp S.ABCD theo a là

Lời giải:

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

III. Bài tập vận dụng

Bài 1 Mỗi cạnh của một khối đa diện là cạnh chung của bao nhiêu mặt của khối đa diện?

Bài 2 Mỗi hình dưới đây gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó).

Bài tập trắc nghiệm Hình học 12 | Câu hỏi trắc nghiệm Hình học 12

Số đa diện lồi trong các hình vẽ trên là?

Bài 3 Tính thể tích của hình hộp ABCD.A'B'C'D' biết rằng AA'B'D' là tứ diện đều cạnh bằng a.

Bài 4 Cho hình chóp S.ABC có đáy là tam giác vuông tại A, các cạnh AB = 1, AC = 2. Các tam giác SAB và SAC lần lượt vuông tại B và C. Góc giữa (SBC) và mặt phẳng đáy bằng 60° . Tính thể tích của khối chóp đã cho.

Bài 5 Cho khối chóp tứ giác đều S.ABCD có cạnh bằng a, cạnh bên SC tạo với mặt đáy một góc 45°. Tính thể tích của khối chóp S. ABCD

Bài 6 Cho hình chóp S.ABC có đáy là tam giác vuông tại A, các cạnh AB = 1, AC = 2. Các tam giác SAB và SAC lần lượt vuông tại B và C. Góc giữa (SBC) và mặt phẳng đáy bằng 60° . Tính thể tích của khối chóp đã cho.

Bài 6 Cho hình chóp tam giác đều cạnh bằng 3. Tính thể tích hình chóp đó biết chiều cao h = 7

Bài 8 Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, SA = 2a và SA vuông góc với mặt phẳng (ABC). Gọi M và N lần lượt là hình chiếu vuông góc của A trên các đường thẳng SB và SC. Thể tích V của khối chóp A.BCNM bằng?

Bài 9 Cho tứ diện ABCD. Gọi B’ và C’ lần lượt là trung điểm của AB và AC. Khi đó tỉ số thể tích của khối tứ điện AB’C’D và khối tứ diện ABCD bằng?

Bài 10 Kim tự tháp Kê-ốp ở Ai Cập được xây dựng vào khoảng 2500 năm trước công nguyên. Kim tự tháp này là một hình chóp tứ giác đều có chiều cao là 147m, cạnh đáy dài 230m. Tính thể tích của nó

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá