Với giải SGK Toán 11 Chân trời sáng tạo trang 48 chi tiết trong Bài 1: Dãy số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải Toán 11 trang 48 Tập 1 (Chân trời sáng tạo)
a) So sánh an và an + 1, ∀n ∈ ℕ*.
b) So sánh bn và bn + 1, ∀n ∈ ℕ*.
Lời giải:
a) Ta có: an = 3n + 1, an + 1 = 3(n + 1) + 1 = 3n + 4
Vì n ∈ ℕ* nên 3n + 4 > 3n + 1 hay an + 1 > an.
b) Ta có: bn = – 5n, bn + 1 = – 5(n + 1) = – 5n – 5
Vì n ∈ ℕ* nên – 5n – 5 < – 5n hay bn – 1 < bn.
Thực hành 3 trang 48 Toán 11 Tập 1: Xét tính tăng, giảm của các dãy số sau:
a) (un) với ;
b) (xn) với ;
c) (tn) với tn = (– 1)n . n2.
Lời giải:
a) Ta có: (un) với
Xét hiệu
.
Suy ra un+1 > un, ∀n ∈ ℕ*.
Vậy dãy số (un) là dãy số tăng.
b) Ta có:
Xét hiệu
.
Suy ra xn+1 < xn, ∀n ∈ ℕ*.
Vậy dãy số (xn) là dãy số giảm.
c) Ta có: tn+1 = (– 1)n+1 . (n + 1)2
Xét hiệu: tn+1 – tn = (– 1)n+1 . (n + 1)2 – ( – 1)n.n2
Với n chẵn:
tn+1 – tn = 0 – (n + 1)2 – n2 < 0, ∀n ∈ ℕ*.
Suy ra tn+1 < tn, ∀n ∈ ℕ*.
Vì vậy dãy số (tn) là dãy số giảm.
Với n lẻ:
tn+1 – tn = (n + 1)2 + n2 > 0, ∀n ∈ ℕ*.
Suy ra tn+1 > tn, ∀n ∈ ℕ*.
Vì vậy dãy số (tn) là dãy số tăng.
Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Hoạt động khám phá 1 trang 45 Toán 11 Tập 1: Cho hàm số: Tính u(1), u(2), u(50), u(100).
Hoạt động khám phá 2 trang 46 Toán 11 Tập 1: Cho hàm số: Tính v(1), v(2), v(3), v(4), v(5).
Thực hành 1 trang 46 Toán 11 Tập 1: Cho dãy số: Hãy cho biết dãy số trên là hữu hạn hay vô hạn.
Vận dụng 1 trang 46 Toán 11 Tập 1: Cho 5 hình tròn theo thứ tự có bán kính 1; 2; 3; 4; 5.
Thực hành 2 trang 47 Toán 11 Tập 1: Cho dãy số (un) xác định bởi:
Thực hành 3 trang 48 Toán 11 Tập 1: Xét tính tăng, giảm của các dãy số sau: a) (un) với ;
Thực hành 4 trang 49 Toán 11 Tập 1: Xét tính bị chặn của các dãy số sau:a) (an) với ;
Bài 1 trang 50 Toán 11 Tập 1: Tìm u2, u3 và dự đoán công thức số hạng tổng quát của un dãy số:
Bài 3 trang 50 Toán 11 Tập 1: Xét tính tăng, giảm của dãy số (yn) với .
Bài 4 trang 50 Toán 11 Tập 1: Xét tính bị chặn của các dãy số sau: a) (an) với ;
Bài 5 trang 50 Toán 11 Tập 1: Cho dãy số (un) với . Chứng minh (un) là dãy số tăng và bị chặn.
Bài 6 trang 50 Toán 11 Tập 1: Cho dãy số (un) với . Tìm các giá trị của a để:a) (un) là dãy số tăng;
Xem thêm lời giải sách giáo khoa Toán 11 Chân trời sáng tạo hay, chi tiết khác:
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.