Giải Toán 11 trang 50 Tập 1 (Chân trời sáng tạo)

196

Với giải SGK Toán 11 Chân trời sáng tạo trang 50 chi tiết trong Bài 1: Dãy số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 trang 50 Tập 1 (Chân trời sáng tạo)

Bài 1 trang 50 Toán 11 Tập 1: Tìm u2, u3 và dự đoán công thức số hạng tổng quát của un dãy số: Toán 11 (Chân trời sáng tạo) Bài 1: Dãy số  (ảnh 7)

Lời giải:

Ta có: n = 2 ≥ 1 nên u2=u11+u1=11+1=12.

n = 3 ≥ 1 nên u3=u21+u2=121+12=13.

n = 4 ≥ 1 nên u4=u31+u3=131+13=14.

n = 5 ≥ 1 nên u5=u41+u4=141+14=15.

Dự đoán công thức số hạng tổng quát un của dãy số là: un=1n,n*.

Bài 2 trang 50 Toán 11 Tập 1: Cho dãy số (un) với un=11.2+12.3+...+1nn+1. Tìm u1, u2, u3 và dự đoán công thức số hạng tổng quát của un.

Lời giải:

Ta có:

Toán 11 (Chân trời sáng tạo) Bài 1: Dãy số  (ảnh 8)

Dự đoán công thức tổng quát:

Toán 11 (Chân trời sáng tạo) Bài 1: Dãy số  (ảnh 9)

Bài 3 trang 50 Toán 11 Tập 1: Xét tính tăng, giảm của dãy số (yn) với yn=n+1n.

Lời giải:

Ta có: yn+1=n+1+1n+1=n+2n+1.

Xét hiệu

 yn+1yn=n+2n+1n+1+n=n+2+n>0,n*.

Suy ra yn+1 > yn, ∀n ∈ ℕ*.

Vậy dãy số (yn) tăng.

Bài 4 trang 50 Toán 11 Tập 1: Xét tính bị chặn của các dãy số sau:

a) (an) với an=sin2nπ3+cosnπ4;

b) (un) với un=6n4n+2.

Lời giải:

a) Vì 0sin2nπ31,n* và 1cosnπ41,n* nên 1sin2nπ3+cosnπ42,n*

Do đó 1an2,n*

Suy ra dãy số (an) bị chặn.

b) Ta có: un=6n-4n+2=6-16n+2

Vì n ∈ ℕ* nên n ≥ 1 do đó ta có: n + 2 ≥ 3

16n+2163

616n+26163

un23.

Mặt khác n ∈ ℕ* nên n > 0 do đó 16n+2>0 khi đó un < 6.

Suy ra 23un<6 nên dãy số bị chặn trên và chặn dưới.

Vì vậy dãy số (un) bị chặn.

Bài 5 trang 50 Toán 11 Tập 1: Cho dãy số (un) với un=2n1n+1. Chứng minh (un) là dãy số tăng và bị chặn.

Lời giải:

Ta có: un=2n1n+1=23n+1

Vì n ∈ ℕ* nên n ≥ 1 do đó ta có: n + 1 ≥ 2

3n+132

23n+1232

un12

Mặt khác n ∈ ℕ* nên n > 0 do đó 3n+1>0 khi đó un < 2.

Suy ra 13un<2 nên dãy số bị chặn trên và chặn dưới.

Vì vậy dãy số (un) bị chặn.

Ta có: un+1=2n+11n+1+1=2n+1n+2

Xét hiệu:

un+1un=2n+1n+22n1n+1=2n2+3n+12n23n+2(n+1)(n+2)=3(n+1)(n+2)>0,n*

Suy ra un+1 > un nên dãy số (un) tăng.

Vậy dãy số (un) tăng và bị chặn.

Bài 6 trang 50 Toán 11 Tập 1: Cho dãy số (un) với un=na+2n+1. Tìm các giá trị của a để:

a) (un) là dãy số tăng;

b) (un) là dãy số giảm.

Lời giải:

Ta có: un+1=n+1a+2n+1+1=n+1a+2n+2

Xét hiệu:

un+1un=n+1a+2n+2na+2n+1=n+1a+2n+1n+2n+1na+2n+2n+1n+2

=n2+2n+1a+2n+2n+2n+1n2+2na+2n+4n+1n+2=a2n+1n+2

Vì n ∈ ℕ* nên (n + 1)(n + 2) > 0 nên dấu của hiệu un+1 – un phụ thuộc vào dấu của biểu thức a – 2.

a) Để (un) là dãy số tăng thì un+1 – un > 0 nên a – 2 > 0 ⇔ a > 2.

b) Để (un) là dãy số giảm thì un+1 – un < 0 nên a – 2 < 0 ⇔ a < 2.

Bài 7 trang 50 Toán 11 Tập 1: Trên lưới ô vuông, mỗi ô cạnh 1 đơn vị, người ta vẽ 8 hình vuông và tô màu khác nhau như hình 3. Tìm dãy số biểu diễn độ dài cạnh của 8 hình vuông đó từ nhỏ đến lớn. Có nhận xét gì về dãy số trên?

Toán 11 (Chân trời sáng tạo) Bài 1: Dãy số  (ảnh 10)

Lời giải:

Toán 11 (Chân trời sáng tạo) Bài 1: Dãy số  (ảnh 11)

Độ dài cạnh của hình vuông số 1 là: 1;

Độ dài cạnh của hình vuông số 2 là: 1;

Độ dài cạnh của hình vuông số 3 là: 2;

Độ dài cạnh của hình vuông số 4 là: 3;

Độ dài cạnh của hình vuông số 5 là: 5;

Độ dài cạnh của hình vuông số 6 là: 8;

Độ dài cạnh của hình vuông số 7 là: 13;

Độ dài cạnh của hình vuông số 8 là: 21.

Ta có dãy số: 1; 1; 2; 3; 5; 8; 13; 21.

Nhận xét: Dãy số trên có đặc điểm là:

Trong ba số hạng liên tiếp, số hạng thứ ba bằng tổng hai số hạng đầu.

Đánh giá

0

0 đánh giá