Giải Toán 11 trang 115 Tập 1 (Chân trời sáng tạo)

207

Với giải SGK Toán 11 Chân trời sáng tạo trang 115 chi tiết trong Bài 5: Phương trình lượng giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 trang 115 Tập 1 (Chân trời sáng tạo)

Thực hành 1 trang 115 Toán 11 Tập 1: Cho tứ diện ABCD có E, F, H lần lượt là trung điểm của AB, AC, AD. Chứng minh (EFH) // (BCD).

Lời giải:

Toán 11 (Chân trời sáng tạo) Bài 4: Hai mặt phẳng song song (ảnh 5)

Trong mặt phẳng (ABC) có EF // BC (tính chất đường trung bình của tam giác ABC) suy ra EF // (BDC).

Trong mặt phẳng (ABD) có HE // BD ( tính chất đường trung bình của tam giác ABD) suy ra HE // (BDC).

Ta có EF và HE cắt nhau tại E và cùng nằm trong mặt phẳng (EFH) nên (EFH) // (BCD).

3. Tính chất của hai mặt phẳng song song

Hoạt động khám phá 3 trang 115 Toán 11 Tập 1: a) Cho điểm A ở ngoài mặt phẳng (Q). Trong (Q) vẽ hai đường thẳng cắt nhau a’ và b’. Làm thế nào để vẽ hai đường thẳng a và b đi qua A và song song với (Q)?

b) Có nhận xét gì về mối liên hệ giữa mp(a, b) và (Q)?

Lời giải:

a) Để vẽ được đường thẳng a đi qua A và song song với mặt phẳng (Q) ta làm như sau: Từ điểm A vẽ đường thẳng a song song với đường thẳng a’ mà a’ nằm trong (Q) nên thỏa mãn a // (Q).

Tương tự từ điểm A vẽ đường thẳng b song song với đường thẳng b’ mà b’ nằm trong (Q) nên thỏa mãn b // (Q).

b) Ta có a, b ⊂ mp(a, b), a ∩ b = {A}, a // (Q) và b // (Q) nên mp(a, b) // (Q).

Hoạt động khám phá 4 trang 115 Toán 11 Tập 1: Cho ba mặt phẳng (P), (Q), (R) thỏa mãn (P) // (Q), (R) ∩ (P) = a và (R) ∩ (Q) = b. Xét vị trí tương đối của a và b.

Toán 11 (Chân trời sáng tạo) Bài 4: Hai mặt phẳng song song (ảnh 6)

Lời giải:

Ta có: (P) // (Q) và a ⊂ (P) nên a // (Q).

Ta lại có (R) ∩ (Q) = b nên a // b.

Đánh giá

0

0 đánh giá