SBT Toán 11 (Chân trời sáng tạo) Bài 4: Hai mặt phẳng song song

357

Toptailieu.vn biên soạn và giới thiệu giải Sách bài tập Toán 11 Bài 4: Hai mặt phẳng song song Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm các bài tập từ đó nâng cao kiến thức và biết cách vận dụng phương pháp giải vào các bài tập trong SBT Toán 11 Bài 4.

SBT Toán 11 (Chân trời sáng tạo) Bài 4: Hai mặt phẳng song song

Bài 1 trang 127 SBT Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy là hình thang ABCD, AD // BC, AD = 2BC. Gọi E, F, I lần lượt là trung điểm của các cạnh SA, AD, SD.

a) Chứng minh: (BEF) // (SCD) và CI // (BEF).

b) Tìm giao tuyến của hai mặt phẳng (SBC) và (SAD).

c) Tìm giao điểm K của FI với giao tuyến vừa tìm được ở câu b, từ đó chứng minh (SBF) // (KCD).

Lời giải:

Cho hình chóp S.ABCD có đáy là hình thang ABCD, AD // BC, AD = 2BC

a) • Xét ∆SAD có E, F lần lượt là trung điểm của các cạnh SA, AD nên EF là đường trung bình của tam giác SAD, suy ra EF // SD.

Mà SD ⊂ (SCD), suy ra EF // (SCD).

Ta có F là trung điểm của AD nên AF = FD = 12AD,

Mà AD = 2BC hay BC = 12AD nên BC = AF = FD.

Lại có BC // AD hay BC // FD

Do đó tứ giác BFDC là hình bình hành nên BF // CD

Mà CD ⊂ (SCD)

Suy ra BF // (SCD).

Ta có: EF // (SCD);

BF // (SCD);

EF ∩ BF = F trong (BEF).

Suy ra (BEF) // (SCD).

• Xét ∆SAD có: E, I lần lượt là trung điểm của SA, SD

Suy ra EI là đường trung bình của ∆SAD, do đó EI // AD và EI = 12AD

Mà AD // BC và BC = 12AD

Suy ra EI // BC và EI = BC = 12AD

Do đó tứ giác EICB là hình bình hành nên CI // BE.

Mặt khác BE ⊂ (BEF), suy ra CI // (BEF).

b) Ta có BC // AD, BC ⊂ (SBC) và AD ⊂ (SAD)

Suy ra giao tuyến của (SBC) và (SAD) là đường thẳng d đi qua S và d // BC // AD.

c) Do d ⊂ (SAD) và FI ⊂ (SAD) nên trong mặt phẳng (SAD), ta có d ∩ FI = K.

Xét ∆SAD có I là trung điểm của SD, F là trung điểm của AD.

Suy ra IF là đường trung bình của ∆SAD, suy ra IF // SA hay KF // SA (1)

Mặt khác, SK // AF (2).

Từ (1) và (2) suy ra SKFA là hình bình hành, do đó SK = AF.

Suy ra SK = FD (vì AF = FD).

Tứ giác SKDF có SK = FD và SK // FD, nên SKDF là hình bình hành.

Suy ra SF // KD.

Ta có SF // KD và KD ⊂ (KCD) nên SF // (KCD).

BF // DC và DC ⊂ (KCD) nên BF // (KCD).

Lại có, trong (SBF) thì SF ∩ BF = F

Suy ra (SBF) // (KCD).

Bài 2 trang 127 SBT Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA và CD.

a) Chứng minh (OMN) // (SBC).

b) Giả sử hai tam giác SAD và SAB là các tam giác cân tại A. Gọi AE và AF lần lượt là đường phân giác trong của hai tam giác SAD và SAB. Chứng minh EF // (SBD).

Lời giải:

Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm

a) • Xét ∆SAC có: M, O lần lượt là trung điểm của SA, AC nên MO là đường trung bình của tam giác SAC, suy ra MO // SC.

Mà SC ⊂ (SCB), suy ra MO // (SCB).

• Xét ∆DCB có: N, O lần lượt là trung điểm của CD, BD nên NO là đường trung bình của tam giác DCB, suy ra NO // BC

Mà BC ⊂ (SBC), suy ra NO // (SCB).

Ta có: MO // (SCB);

NO // (SCB);

MO, NO ⊂ (OMN); MO ∩ NO = O.

Vậy (OMN) // (SBC).

b) Ta có hai tam giác SAD và SAB là các tam giác cân tại A, suy ra AE và AF vừa là

phân giác vừa là đường trung tuyến lần lượt của hai tam giác SAD và SAB, suy ra E và F lần lượt là trung điểm của SD và SB.

Suy ra EF là đường trung bình của tam giác SDB nên EF // BD

Mà BD ⊂ (SBD)

Suy ra EF // (SBD).

Bài 3 trang 128 SBT Toán 11 Tập 1: Cho hình hộp ABCD.A’B’C’D’. Chứng minh:

a) (BDA’) // (B’D’C).

b) Đường chéo AC’ đi qua trọng tâm G và G’ của hai tam giác BDA’ và B’D’C.

c) G và G’ chia đoạn AC’ thành ba phần bằng nhau.

Lời giải:

Cho hình hộp ABCD.A’B’C’D’. Chứng minh: (BDA’) // (B’D’C)

a) Ta có DD’ // BB’ và DD’ = BB’ (do ABCD.A’B’C’D’ là hình hộp), suy ra DD’B’B là hình bình hành, suy ra BD // B’D’ mà B’D’ ⊂ (B’D’C), suy ra BD // (B’D’C).

Chứng minh tương tự ta có DA’ // B’C, mà B’C ⊂ (B’D’C).

Suy ra DA’ // (B’D’C).

Ta có BD // (B’D’C);

DA’ // (B’D’C);

BD ∩ DA’ = D và BD, DA’ ⊂ (BDA’).

Suy ra (BDA’) // (B’D’C).

b) Gọi O, O’ lần lượt là tâm của hai đáy ABCD và A’B’C’D’.

Trong hình bình hành AA’C’C gọi I là giao điểm của AC’ và A’C; AC’ cắt A’O tại G1.

Trong tam giác AA’C, ta có G1 là giao điểm của hai trung tuyến AI và A’O nên G1 là trọng tâm của tam giác AA’C. Do đó A'G1=23A'O

Mà G là trọng tâm của tam giác A’BD nên ta cũng có A'G=23A'O

Do đó G1 ≡ G hay ta xác định được G là giao điểm của AC’ và A’O.

Tương tự ta cũng xác định được trọng tâm G’ tam giác B’D’C là giao điểm của AC’ với CO’.

Vậy AC’ đi qua trọng tâm của hai tam giác BDA’ và B’D’C.

c) Ta có AG=23AI=2312AC'=13AC'C'G'=23C'I=2312AC'=13AC'.

Do đó AG=C'G'=13AC' nên GG'=AC'AGC'G' = AC'13AC'13AC' = 13AC'.

Hay AG = GG’ = G’C’.

Vậy G và G’ chia đoạn AC’ thành ba phần bằng nhau.

Bài 4 trang 128 SBT Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và M, N lần lượt là trung điểm của AB, CD. (P) là mặt phẳng đi qua MN và song song với mặt phẳng (SAD). Tìm giao tuyến của các mặt của hình chóp với mặt phẳng (P).

Lời giải:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và M, N lần lượt là trung điểm

Do M, N lần lượt là trung điểm của AB, CD nên MN // BC // AD.

Mà AD ⊂ (SAD) nên MN // (SAD).

Gọi E là trung điểm của SC.

Xét ∆SCD có N, E lần lượt là trung điểm của CD, SC nên NE là đường trung bình của tam giác, suy ra NE // SD.

Mà SD ⊂ (SAD) nên NE // (SAD).

Ta có: MN // (SAD);

NE // (SAD);

MN ∩ NE = N trong (MNE).

Do đó (MNE) // (SAD).

Khi đó (MNE) chính là mặt phẳng (P).

Gọi F là trung điểm của SB, tương tự ta cũng có (MNEF) là mặt phẳng (P).

Vậy, (P) ∩ (ABCD) = MN với MN // BC // AD.

(P) ∩ (SAB) = MF với MF // SA (F là trung điểm của SB).

(P) ∩ (SDC) = NE với NE // SD (E là trung điểm của SC).

(P) ∩ (SBC) = EF.

Xem thêm các bài SBT Toán 11 Chân trời sáng tạo hay, chi tiết khác:

Bài 3: Đường thẳng và mặt phẳng song song

Bài 5: Phép chiếu song song

Bài tập cuối chương 4 trang 132

Bài 1: Số trung bình và mốt của mẫu số liệu ghép nhóm

Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm

 

 

Đánh giá

0

0 đánh giá