SBT Toán 11 (Chân trời sáng tạo) Bài 3: Đường thẳng và mặt phẳng song song

343

Toptailieu.vn biên soạn và giới thiệu giải Sách bài tập Toán 11 Bài 3: Đường thẳng và mặt phẳng song song Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm các bài tập từ đó nâng cao kiến thức và biết cách vận dụng phương pháp giải vào các bài tập trong SBT Toán 11 Bài 3.

SBT Toán 11 (Chân trời sáng tạo) Bài 3: Đường thẳng và mặt phẳng song song

Bài 1 trang 121 SBT Toán 11 Tập 1: Cho tứ diện ABCD. Gọi G1 và G2 lần lượt là trọng tâm của hai tam giác ABD và ACD. Chứng minh G1G2 song song với các mặt phẳng (ABC) và (BCD).

Lời giải:

Cho tứ diện ABCD. Gọi G1 và G2 lần lượt là trọng tâm của hai tam giác ABD và ACD

Gọi M, N lần lượt là trung điểm của DB, DC.

Xét ∆DBC có M, N lần lượt là trung điểm của DB, DC nên MN là đường trung bình của ∆DBC, suy ra MN // BC.

Do G1 là trọng tâm ∆ABD nên AG1AM=23;

G2 là trọng tâm ∆ACD nên AG2AN=23.

Do đó AG1AM=AG2AN=23.

Trong tam giác AMN, ta có AG1AM=AG2AN=23 nên G1G2 // MN (định lí Thalès đảo)

Mà MN // BC (chứng minh trên)

Suy ra G1G2 // MN // BC, mà BC ⊂ (ABC), MN ⊂ (BCD).

Suy ra G1G2 song song với các mặt phẳng (ABC) và (BCD).

Bài 2 trang 121 SBT Toán 11 Tập 1: Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng có tâm lần lượt là O và O’.

a) Chứng minh OO’ song song với các mặt phẳng (ADF) và (BCE).

b) Gọi M, N lần lượt là hai điểm thuộc hai cạnh AF, AD sao cho AM = 13AF, AN = 13AD Chứng minh MN // (DCEF).

Lời giải:

Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng

a) Do O, O’ lần lượt là tâm của hình bình hành ABCD và ABEF nên O là trung điểm của BD, AC và O’ là trung điểm của BF, AE.

Xét trong ∆BDF có: O, O’ lần lượt là trung điểm của BD, BF nên OO’ là đường trung bình của ∆BDF, suy ra OO’ // DF (1)

Tương tự, trong ∆ACE ta cũng có OO’ // CE (2)

Từ (1) và (2) suy ra OO’ // DF // CE, mà DF ⊂ (ADF), CE ⊂ (BCE)

Suy ra OO’ song song với các mặt phẳng (ADF) và (BCE).

b) Do AM = 13AF, AN = 13AD nên AMAF=ANAD=13

Xét ∆ADF có AMAF=ANAD suy ra MN // DF (định lý Thalès đảo)

Mà DF ⊂ (DCEF), suy ra MN // (DCEF).

Bài 3 trang 122 SBT Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là một hình bình hành. Gọi G là trọng tâm của tam giác SAB, I là trung điểm của AB và M là điểm thuộc cạnh AD sao cho AM = 13AD. Đường thẳng đi qua M và song song với AB cắt CI tại N. Chứng minh:

a) NG // (SCD);

b) MG // (SCD).

Lời giải:

Cho hình chóp S.ABCD có đáy ABCD là một hình bình hành. Gọi G là trọng tâm

a) Gọi F là giao điểm của MN và BC.

Ta có MN // AB, suy ra NF // BI (vì F ∈ MN, I ∈ AB).

Trong ∆CIB có NF // BI, nên theo định lí Thalès ta có: INIC=BFBC (1)

Mặt khác, AM = 13AD suy ra AMAD=13

Lại có MF // AB // DC nên BFCF=AMAD=13 (2)

Từ (1) và (2) suy ra NICI=BFBC=13

Trong ∆SAB, ta có G là trọng tâm nên IGIS=13.

Trong ∆SIC, ta có GISI=NICI=13, suy ra GN // SC (định lí Thalès đảo).

Mà SC ⊂ (SDC), do đó NG // (SDC).

b) Trong mặt phẳng (ABCD), gọi O là giao điểm của MI và DC.

Trong ∆OCI có MN // OC (do O ∈ DC), suy ra IMIO=INIC=13 (theo định lí Thalès).

Mà IGIS=13 (G là trọng tâm của ∆SAB).

Do đó, trong ∆SOI có IMIO=IGIS=13, suy ra MG // OS (định lí Thalès đảo).

Mà OS ⊂ (SDC), do đó MG // (SDC).

Bài 4 trang 122 SBT Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của hai cạnh AB và CD, P là trung điểm của SA. Chứng minh:

a) MN song song với các mặt phẳng (SBC) và (SAD);

b) SB song song với (MNP);

c) SC song song với (MNP).

d) Gọi G1 và G2 theo thứ tự là trọng tâm của hai tam giác ABC và SBC. Chứng minh G1G2 song song với (SAD).

Lời giải:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm

a) Hình bình hành ABCD có M, N lần lượt là trung điểm của hai cạnh AB và CD nên MN // AD // BC

Ta có MN // BC và BC ⊂ (SBC), suy ra MN // (SBC);

MN // AD và AD ⊂ (SAD), suy ra MN // (SAD).

Vậy MN song song với các mặt phẳng (SBC) và (SAD).

b) Trong ∆SAB, có P, M lần lượt là trung điểm của SA, AB nên PM là đường trung bình, suy ra PM // SB

Mà PM ⊂ (MNP), suy ra SB // (MNP).

c) Trong mặt phẳng (SAB) vẽ đường thẳng d đi qua S và song song AB.

Gọi E là giao điểm của MP và d.

Ta có d // AB hay ES // AB, mà AB // CD nên ES // DC, tức là ES // NC (1)

Ta cũng có ES // MB và EM // SB nên MBSE là hình bình hành, suy ra ES = MB

Mà MB = NC (do M, N lần lượt là trung điểm của AB, DC và AB = DC)

Suy ra ES = NC (2)

Từ (1) và (2) suy ra ESCN là hình bình hành nên SC // NE.

Lại có NE ⊂ (MNP), suy ra SC // (MNP).

d) Gọi I là trung điểm của BC.

Do G1 và G2 theo thứ tự là trọng tâm của ∆ABC và ∆SBC nên IG1IA=IG2IS=13

Trong ∆SIA, ta có IG1IA=IG2IS=13, suy ra G1G2 // SA (định lí Thalès đảo)

Mà SA ⊂ (SAD), nên G1G2 // (SAD).

Bài 5 trang 122 SBT Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi (α) là mặt phẳng đi qua trung điểm M của cạnh AB, song song với BD và SA. Tìm giao tuyến của mặt phẳng (α) với các mặt của hình chóp.

Lời giải:

Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi (alpha) là mặt phẳng đi qua trung điểm

Gọi N, P, R lần lượt là trung điểm của AD, SD, SB.

Xét ∆ABD có M, N lần lượt là trung điểm của AB, AD nên MN là đường trung bình của tam giác. Do đó MN // BD.

Ta có MN // BD và MN ⊂ (MNPR) nên BD // (MNPR)

Tương tự, ta cũng có SA // (MNPR)

Ta thấy (MNPR) đi qua M và song song với BD, và SA nên chính là mp(α).

Trong mặt phẳng (SAB) vẽ đường thẳng d đi qua S và d // AB // CD.

Khi đó, giả sử MR cắt d tại I, PI cắt SC tại Q.

Lúc này, mặt phẳng (α) là (MNPI).

Ta có MN ⊂ (ABCD), MN ⊂ (MNPI) nên (MNPI) ∩ (ABCD) = MN hay (α) ∩ (ABCD) = MN.

Tương tự, (α) ∩ (SAD) = NP, (α) ∩ (SCD) = PQ, (α) ∩ (SBC) = QR, (α) ∩ (SAB) = MR.

Xem thêm các bài SBT Toán 11 Chân trời sáng tạo hay, chi tiết khác:

Bài 2: Hai đường thẳng song song

Bài 4: Hai mặt phẳng song song

Bài 5: Phép chiếu song song

Bài tập cuối chương 4 trang 132

Bài 1: Số trung bình và mốt của mẫu số liệu ghép nhóm

 

Đánh giá

0

0 đánh giá