Lý thuyết Cấp số cộng (Cánh diều) hay, chi tiết | Lý thuyết Toán 11

543

Toptailieu.vn xin giới thiệu Lý thuyết Cấp số cộng (Cánh diều) hay, chi tiết | Lý thuyết Toán 11 Bài viết gồm phần lý thuyết trọng tâm nhất được trình bày một cách dễ hiểu, dễ nhớ bên cạnh đó là bộ câu hỏi trắc nghiệm có hướng dẫn giải chi tiết để học sinh có thể vận dụng ngay lý thuyết, nắm bài một cách hiệu quả nhất. Mời các bạn đón xem:

Lý thuyết Cấp số cộng (Cánh diều) hay, chi tiết | Lý thuyết Toán 11

Bài giải Bài 2: Cấp số cộng 

A. Lý thuyết Cấp số cộng

1. Định nghĩa

Cấp số cộng là một dãy số ,trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng số hạng đứng ngay trước nó cộng với một số không đổi d. Tức là:

un=un1+d,n2

Số d được gọi là công sai của cấp số cộng.

* Nhận xét: Nếu (un) là cấp số cộng thì kể từ số hạng thứ 2, mỗi số hạng (trừ số hạng cuối đối với cấp số cộng hữu hạn) đều là trung bình cộng của 2 sô hạng đứng kề nó trong dãy, tức là:

uk=uk1+uk+12(k2)

2. Số hạng tổng quát

Nếu cấp số cộng (un) có số hạng đầu là u1 và công sai d thì số hạng tổng quát uncủa nó được xác định theo công thứcun=u1+(n1)d,n2.

3. Tổng n số hạng đầu của một cấp số cộng

Cho cấp số cộng (un)với công sai d. Đặt Sn=u1+u2+u3+...+un. Khi đó

Sn=n(u1+un)2=n2[2u1+(n1)d]

Lý thuyết Cấp số cộng – Toán 11 Cánh diều (ảnh 1)

B. Bài tập Cấp số cộng

Đang cập nhật ...

Xem thêm Lý thuyết  các bài Toán 11 Cánh diều hay, chi tiết khác:

Lý thuyết Bài 1: Dãy số

Lý thuyết Bài 3: Cấp số nhân

Lý thuyết Bài 1: Giới hạn của dãy số

Lý thuyết Bài 2: Giới hạn của hàm số

Lý thuyết Bài 3: Hàm số liên tục

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá