Phương pháp giải Cấp số cộng (HAY NHẤT 2024)

288

Toptailieu.vn biên soạn và giới thiệu Phương pháp giải Cấp số cộng (HAY NHẤT 2024) gồm đầy đủ các phần: Lý thuyết, phương pháp giải, bài tập minh họa có lời giải chi tiết giúp học sinh làm tốt bài tập Toán 11 từ đó học tốt môn Toán. Mời các bạn đón xem:

Phương pháp giải Cấp số cộng (HAY NHẤT 2024)

1. Lý thuyết

a) Định nghĩa:

Cấp số cộng là một dãy số (hữu hạn hoặc vô hạn), trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng số hạng đứng ngay trước nó cộng với một số không đổi d.

- Số không đổi d được gọi là công sai của cấp số cộng.

- Nếu (un) là một cấp số cộng với công sai d, ta có công thức truy hồi  

un+1=un+d,n*

Nhận xét:

- Cấp số cộng (un) là một dãy số tăng khi và chỉ khi công sai d > 0.

- Cấp số cộng (un) là một dãy số giảm khi và chỉ khi công sai d < 0.

- Đặc biệt, khi d = 0 thì cấp số cộng là một dãy số không đổi (tất cả các số hạng đều bằng nhau).

b) Số hạng tổng quát của cấp số cộng (un) được xác định bởi công thức:

un u1 + (n - 1)d với n1,n.

c) Tính chất:

Ba số hạng uk1,uk,uk+1k2 là ba số hạng liên tiếp của cấp số cộng khi và chỉ khi uk=uk1+uk+12.

d) Tổng n số hạng đầu tiên Sn được xác định bởi công thức:

Sn=u1+u2+...+un=nu1+un2=n2u1+n1d2

2. Các dạng bài tập

Dạng 1. Xác định cấp số cộng và các yếu tố của cấp số cộng

Phương pháp giải:

- Dãy số (un) là một cấp số cộng khi và chỉ khi un + 1 – un = d không phụ thuộc vào n và d là công sai của cấp số cộng đó.

- Để xác định một cấp số cộng, ta cần xác định số hạng đầu và công sai. Ta thiết lập một hệ phương trình hai ẩn u­1 và d. Tìm u­1 và d.

- Tìm số hạng thứ n dựa vào công thức tổng quát: un = u1 + (n – 1)d hoặc công thức truy hồi un = un - 1 + d.

Ví dụ minh họa:

Ví dụ 1: Cho các dãy số sau, dãy số nào là cấp số cộng. Nếu là cấp số cộng hãy xác định số hạng đầu tiên và công sai:

a) – 2; 1; 4; 7; 10; 13; 16; 19.

b) 2; 4; 6; 10; 12; 14; 16; 18; 20.

c) Dãy số (an), với an = 4n – 3.

Lời giải

a) Ta thấy 1 – (– 2) = 4 – 1 = 7 – 4 = 10 – 7 = 13 – 10 = 16 – 13 = 19 – 16 = 3

Nên dãy số – 2; 1; 4; 7; 10; 13; 16; 19 là cấp số cộng.

Số hạng đầu tiên của cấp số cộng là u1 = – 2, công sai là d = 3.

b) Ta thấy: 4 – 2 = 2 nhưng 10 – 6 = 4

Nên dãy số 2; 4; 6; 10; 12; 14; 16; 18; 20 không là cấp số cộng.

c) Ta có: an = 4n – 3 thì an+1 = 4(n + 1) – 3.

Xét an+1 – an = 4(n + 1) – 3 – (4n – 3) = 4 (không đổi)

Vậy dãy số (an) với an = 4n – 3 là cấp số cộng.

Số hạng đầu tiên của cấp số cộng là a1 = 4.1 – 3 = 1, công sai là d = 4.

Ví dụ 2: Cho cấp số cộng (un) thỏa mãn: u2u3+u5=10u4+u6=26

a) Xác định công sai và hạng đầu tiên của cấp số cộng trên.

b) Xác định công thức tổng quát của cấp số cộng trên.

c) Tìm số hạng thứ 15 của cấp số cộng trên.

d) Số 6061 là số hạng thứ bao nhiêu của cấp số cộng.

Lời giải

Gọi cấp số cộng có số hạng đầu tiên là u1 và công sai d

Số hạng tổng quát của (un) là un = u1 + (n – 1)d

Ta có: 

u2u3+u5=10u4+u6=26u1+du1+2d+u1+4d=10u1+3d+u1+5d=26

u1+3d=102u1+8d=26u1=1d=3

Vậy u1 = 1 và d = 3.

b) Số hạng tổng quát là: un = 1 + (n – 1).3 hay u= 3n – 2 với .

c) Số hạng thứ 15 của cấp số cộng: u15 = 3.15 – 2 = 43.

d) Giả sử số hạng thứ k của cấp số cộng là uk = 6061, ta có: uk = 3k – 2 = 6061, suy ra k = 2021.

Vậy số 6061 là số hạng thứ 2021 của cấp số cộng.

Dạng 2. Tìm điều kiện để dãy số lập thành cấp số cộng. Chứng minh cấp số cộng

Phương pháp giải:

Sử dụng tính chất: Ba số hạng uk-1; uk; uk+1 là ba số hạng liên tiếp của cấp số cộng khi và chỉ khi uk=uk1+uk+12.

Ví dụ minh họa:

Ví dụ 1:

a) Tìm x biết: x2 + 1, x – 2, 1 – 3x lập thành cấp số cộng.

b) Cho cấp số cộng – 2, x, 6, y. Tính giá trị của biểu thức P = x2 + y2.

Lời giải

a) Ta có: x2 + 1, x – 2, 1 – 3x lập thành cấp số cộng

x2+1+13x=2(x2)x25x+6=0x=2x=3

Vậy x = 2, x = 3 là những giá trị cần tìm.

b) Theo tính chất của cấp số cộng, ta có x=2+62=26=x+y2x=2y=10

Vậy P = x2 + y2 = 22 + 102 = 104.

Ví dụ 2: Chứng minh rằng:

a) Nếu ba số a, b, c lập thành một cấp số cộng thì ba số x, y, z cũng lập thành một cấp số cộng, với: x = a2 – bc, y = b2 – ca, z = c2 – ab.

b) Nếu phương trình x3 – ax2 + bx – c = 0 có ba nghiệm lập thành cấp số cộng thì 9ab = 2a3 + 27c.

Lời giải

a) a, b, c là cấp số cộng nên a + c = 2b

Cần chứng minh x, y, z cũng lập thành một cấp số cộng tức là x + z = 2y.

Ta có 2y = 2b2 – 2ca

Và x + z = a+ c2 - b(a + c)

= (a + c)– 2ac – 2b2

= 4b2 – 2ac – 2b2

= 2b2 – 2ac = 2y

Khi đó ta được: y=x+z2

Vậy ta có điều phải chứng minh.

b) Giả sử phương trình có ba nghiệm x1, x2, x3 lập thành cấp số cộng khi đó: x1 + x3 = 2x2 (1)

Mặt khác: x3 – ax2 + bx – c = (x – x1)(x – x2)(x – x3)

= x3 – (x1 + x2 + x3)x2 + (x1 x2 + x2 x3 + x3 x1)x – x1 x2 x3

Suy ra x1 + x2 + x3 = a (2)

Từ (1) và (2), ta được 3x2=ax2=a3

Vì phương trình đã cho có nghiệm x2=a3, tức là:

a33aa32+ba3c=02a327+ba3c=09ab=2a3+27c

Vậy ta có điều phải chứng minh.

Dạng 3. Tính tổng của một cấp số cộng

Phương pháp giải:

Tổng n số hạng đầu tiên Sn được xác định bởi công thức:

Sn=u1+u2+...+un=nu1+un2=n2u1+n1d2

Ví dụ minh họa:

Ví dụ 1: Cho cấp số cộng (un)

a) (u­n) có số hạng tổng quát là: un = 7n – 3. Tính S100.

b) (u­n) có u2 + u22 = 40. Tính S23.

c) (u­n) có u+ u8 + u12 + u16 = 224. Tính S19.

Lời giải

a) Từ công thức số hạng tổng quát

Ta có:

Số hạng đầu: u1 = 7 . 1 – 3 = 4;

Số hạng thứ hai là : u2 = 7 . 2 – 3 = 11;

Công sai: d = 11 – 4 = 7

Khi đó ta có:

S100=n2u1+(n1)d2=100[2.4+(1001).7]2=35050

b) Ta có: u2+u22=40u1+d+u1+21d=402u1+22d=40

Vậy S23=232u1+22d2=23.402=460.

c) Ta có: u4 + u+ u12 + u16 = 224

u1+3d+u1+7d+u1+15d=2244u1+36d=224u1+9d=56

Vậy S19=192u1+18d2=19u1+9d=19.56=1064.

Ví dụ 2: Tính các tổng sau:

a) S = 1 + 3 + 5 +... + (2n – 1) + (2n + 1)

b) S = 1 + 4 + 7 +... + (3n – 2) + (3n + 1) + (3n + 4)

c) S = 1002 – 992 + 98– 972 +... + 22 – 12

Lời giải

a) Ta có dãy số 1;3;5;...;(2n – 1);(2n + 1) là cấp số cộng với công sai d = 2 và u= 1, số hạng tổng quát uk = u1 + (k – 1)d.

Ta kiểm tra 2n + 1 là số hạng thứ bao nhiêu của dãy: 2n + 1 = u1 + (k – 1)d

2n+1=1+(k1).2k=n+1. Do đó dãy số có n + 1 số hạng.

Vậy Sn+1=k2u1+k1d2=n+12u1+nd2=(n+1)(2n+1)2.

b) Ta có dãy số 1; 4; 7; ... (3n – 2);(3n + 1);(3n + 4) là cấp số cộng với công sai d = 3 và u1 = 1, số hạng tổng quát uk = u+ (k – 1)d.

Ta kiểm tra 2n + 1 là số hạng thứ bao nhiêu của dãy: 3n + 4 = u+ (k – 1)d

3n+4=1+k1.3k=n+2. Do đó dãy số có n + 2 số hạng.

Vậy Sn+2=k2u1+(k1)d2=(n+2)2+(n+1).32=(n+2)(3n+5)2.

c) S = 1002 – 99+ 982 – 97+... + 2– 12

= (100 – 99)(100 + 99) + (98 – 97)(98 + 97) +... + (2 – 1)(2 + 1)

= 199 + 195 +... + 3

= 3 + 7 +... + 195 + 199

Ta có dãy số 3; 7; ...195; 199 là cấp số cộng với công sai d = 4, số hạng đầu tiên u1 = 3 và số hạng thứ n là un = 199.

Do đó có 199=3+n1.4n=50.

Vậy S=n2u1+n1d2=502.3+49.42=5050.

3. Bài tập vận dụng 

Câu 1. Trong các dãy số dưới đây, dãy số nào là cấp số cộng?

A. Dãy số (an), với an=2n,n*

B. Dãy số (bn), với b1=1,bn+1=2bn+1,n*

C. Dãy số (cn), với cn=(2n3)24n2,n*

D. Dãy số (dn), với d1=1,dn+1=2018dn+1,n*.

Câu 2. Trong các dãy số (un) sau, dãy số nào là một cấp số cộng?

A. 1; – 3; – 7; – 11; – 15. 

B. 1; – 3; – 6; – 9; – 12.

C. 1; – 2; – 4; – 6; – 8.

D. 1; – 3; – 5; – 7; – 9.

Câu 3. Trong các dãy số (un) cho bởi số hạng tổng quát un sau, dãy số nào không phải là một cấp số cộng?

A. un = 5 – 2n.

B. un = 2n.

C. un=n23.

D. un=23n5.

Câu 4. Cho cấp số cộng (un), biết u1 = – 5,d = 3. Khẳng định nào sau đây là đúng?

A. u15 = 34.

B. u15 = 45.

C. u13 = 31.

D. u10 = 35.

Câu 5. Cho cấp số cộng (un), biết u1 = – 5; d = 3. Số 100 là số hạng thứ bao nhiêu?

A. Số thứ 15.

B. Số thứ 20.

C. Số thứ 35.

D. Số thứ 36.

Câu 6. Cho cấp số cộng (un) biết: u1u3+u5=10u1+u6=17. Số hạng đầu tiên là

A. u1 = 16.

B. u1 = 6.

C. u1 = 7.

D. u1 = 14.

Câu 7. Cho cấp số cộng (un) thỏa: u5+3u3u2=213u72u4=34. Tính số hạng thứ 100 của cấp số.

A. u100 = – 243.

B. u100 = – 295.

C. u100 = – 231.

D. u100 = – 294.

Câu 8. Cho cấp số cộng (un) có u1 = 123 và u– u15 = 84. Tìm số hạng u17.

A. u17 = 242.

B. u17 = 235.

C. u17 = 11.

D. u17 = 4.

Câu 9. Xác định x để 3 số 1 – x; x2; 1 + x lập thành một cấp số cộng.

A. x = 1 hoặc x = – 1.                                                                   

B. x = 2 hoặc x = – 2.

C. Không có giá trị nào của x.                

D. x = 0.   

Câu 10. Cho a, b, c theo thứ tự lập thành cấp số cộng, đẳng thức nào sau đây là đúng?

A. a2 + c2 = 2ab + 2bc.

B. a2 – c2 = 2ab – 2bc.  

C. a2 + c2 = 2ab – 2bc.

D. a2 – c2 = ab – bc.

Câu 11. Cho cấp số cộng (un) có u1 = 5 và d = – 4. Tính tổng của 100 số hạng đầu tiên.

A. – 19500.

B. – 19300.

C. – 19750.

D. – 19550.

Câu 12. Cho dãy số (un) xác định bởi u1 = 321 và un + 1 = un – 3 với mọi. Tính tổng S của 125 số hạng đầu tiên của dãy số đó.

A. S = 16875.

B. S = 63375.

C. S = 63562,5.

D. S = 16687,5.

Câu 13. Số hạng tổng quát của một cấp số cộng là un = 3n + 4 với . Gọi Sn là tổng n số hạng đầu tiên của cấp số cộng đã cho. Mệnh đề nào sau đây đúng?

A. Sn=3n12.

B. Sn=73n12.

C. Sn=3n2+5n2.

D. Sn=3n2+11n2.

Câu 14. Cho cấp số cộng 3; 8; 13;... Tính tổng S = 3 + 8 + 13 +... + 2018.

A. S = 408422.

B. S = 408242.

C. S = 407231,5.

D. S = 409252,5.

Câu 15. Phương trình x3  3x2  9x + m = 0 có ba nghiệm phân biệt lập thành cấp số cộng.

A. m = 16.

B. m = 11.

C. m = 13.

D. m = 12.

Đáp án

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

C

A

B

C

C

A

B

C

A

B

B

A

D

B

B

4. Bài tập tự luyện 

Bài 1: Cho cấp số cộng có 8 số hạng. Số hạng đầu bằng 3 và số hạng cuối bằng 24. Tính tổng các số hạng này

A. 105        B. 27        C. 108        D. 111

Lời giải:

Đáp án: C

Đáp án C

Ta có u1 = 3; u8 = 24, n = 8. S8= 8/2(3+24) = 108

Bài 2: Cho các dãy số sau, dãy số nào là cấp số cộng

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Lời giải:

Đáp án: B

Đáp án là B. Dãy ở câu b là CSC với công sai d = - 3.

Bài 3: Cho 4 số lập phương thành cấp số cộng. Tổng của chúng bằng 22. Tổng các bình phương của chúng bằng 166. Tổng các lập phương của chúng bằng :

A. 22        B. 166        C. 1752        D. 1408

Lời giải:

Đáp án: D

Đáp án là D

Gọi 4 số lập thành cấp số cộng là u1,u2,u3,u4

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy 4 số đó là 1,4,7,10 hoặc 10,7,4,1

Tổng các lập phương của chúng: 13+43+73+103=1408

Bài 4: Trong mặt phẳng toạ độ, cho đồ thị (d) của hàm số y= 4x-5.

Với mỗi số nguyên dương, gọi An là giao điểm của(d) và đường thẳng x=n. Xét dãy số (un) với un là tung độ của điểm An. Tính u1+...+u15.

A. 405        B. 305        C. 205        D. 105

Lời giải:

Đáp án: A

Dễ thấy un = 4n -5

Ta có: un+1 = 4(n + 1) - 5 = 4n - 1

⇒ un+1=un+4 với n ≥ 1 ⇒ (un) là một cấp số cộng với công sai d = 4

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án là A

Bài 5: Tìm x biết 1+3 +5+...+x =64

A. 9        B. 11        C. 15        D. 17

Lời giải:

Đáp án: C

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy x=un=u1+(n-1)d=1+7.2=15

Đáp án C.

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy x=un=u1+(n-1)d=1+7.2=15

Đáp án C.

Bài 6: Cho hai cấp số cộng (un): 4,7,10,13,16,...và (vn):1,6,11,16,21,...Hỏi trong 100 số hạng đầu tiên của mỗi cấp số cộng , có bao nhiêu số hạng chung?

A. 10        B. 20        C. 30        D. 40

Lời giải:

Đáp án: B

Ta có: un = 4+(n-1).3 = 3n+1, 1 ≤ n ≤ 100

vn = 1+ (k-1).5 = 5k -4, 1 ≤ k ≤ 100

Để một số là số hạng chung của hai cấp số cộng ta phải có:

3n +1 =5k -4 ⇔ 3n = 5(k-1) ⇒ n⋮5 tức là n = 5t, k =1 + 3t, t ∈ Z

Vì 1 ≤ n ≤ 100 nên 1 ≤ t ≤ 20. Có 20 số hạng chung của hai dãy

Chọn đáp án B

Bài 7: Mặt sàn tầng một ngôi nhà cao hơn mặt sân 0,5m. Cầu thang đi tầng 1 lên tầng 2 gồm 21 bậc, mỗi bậc cao 18cm. Độ cao của tầng hai so với mặt sân là:

A. 4,10m        B. 4,28m        C. 1,89m        D. 1,8m

Lời giải:

Đáp án: B

Độ cao tầng hai so với mặt sàn là h = (0,5+ 0,18n) (m) với n = 21. Vậy ta có độ cao tầng 2 bằng 4,28m

Đáp án B

Bài 8: Trong các dãy số sau, dãy nào là cấp số cộng?

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Lời giải:

Đáp án: B

Đáp án B. Ta có un+1-un=2(n+1)-2n=2. Đây là CSC với công sai d = 2.

Bài 9: Người ta trồng 3003 cây theo hình tam giác như sau: hàng thứ nhất có 1 cây, hàng thứ 2 có 2 cây, hàng thứ 3 có 3 cây,...Vậy có tất cả bao nhiêu hàng?

A. 75        B. 76        C. 77        D. 78

Lời giải:

Đáp án: C

Gọi số hàng cần tìm là n. Ta có các hàng cây lập thành CSC với công sai d = 1 và số hạng đầu là 1.

Khi đó: 3003 = [2.1 + (n – 1).1].n/2, suy ra n = 77.

Đáp án C.

Bài 10: Công sai của cấp số cộng

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

A. 0        B. -1        C. -2        D. -3

Lời giải:

Đáp án: D

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 11: Số hạng đầu tiên của cấp số cộng dương

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

A. 2        B. 3        C. 4        D. 5

Lời giải:

Đáp án: B

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án B.

Bài 12: Xác định số đo góc nhỏ nhất của một tứ giác lồi, biết rằng số đo 4 góc lập thành một cấp số cộng và góc lớn nhất bằng 5 lần góc nhỏ nhất.

A. 30º        B. 45º        C. 15º        D. 60º

Lời giải:

Đáp án: A

Gọi 4 góc đó lập thành cấp số cộng là u1,u2,u3,u4

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án A.

Bài 13: Xen vào giữa hai số 4 và 40 bốn số để được một cấp số cộng có công sai lớn hơn 3. Tìm tổng 4 số đó.

A. 88        B. 92        C. 128        D. 132

Lời giải:

Đáp án: A

Ta có 40 = u6=4+5d. Vậy d = 7.2

.

Ta có u2+u3+u4+u5=4u1+10d=88

Đáp án A.

Bài 14: Giá tiền công khoan giếng ở cơ sở A được tính như sau: giá của mét khoan đầu tiên là 8000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng lên 500 đồng so với giá của mét khoan ngay trước nó. Vậy muốn khoan 20 mét thì mất bao nhiêu đồng?

A. 200000 đồng

B. 255000 đồng

C. 285000 đồng

D. 315000 đồng

Lời giải:

Đáp án: B

Ta có giá các mét khoan lập thành một CSC với công sai d = 500, số hạng đầu là 8000

Khi đó khoan 20 mét thì mất số đồng là:20/2 [2.8000 + (20 – 1)500] = 255000 đồng.

Đáp án B

Bài 15: Cho một dãy số có các số hạng đầu tiên là 1,8,22,43...Hiệu của hai số hạng liên tiếp của dãy số đó lập thành một cấp số cộng: 7,14,21,...,7n. Số 35351 là số hạng thứ bao nhiêu của dãy số đã cho?

A. 57

B. 80

C. 101

D. 200

Lời giải:

Đáp án: C

Gọi n là số thứ tự của 35351 trong dãy số.

Ta có 35351 = 1 + 7(1+2+3+…+n- 1). Khi đó 1+2+3+…+ n-1 = 5050. Khi đó n = 101.

Đáp án C

 

Xem các Phương pháp giải bài tập hay, chi tiết tại: 

Cấp số nhân và cách giải các dạng bài tập

Công thức cấp số cộng

Công thức tính công sai của cấp số cộng

Công thức tìm số hạng tổng quát của cấp số cộng

Công thức tính tổng n số hạng đầu của cấp số cộng

 

Đánh giá

0

0 đánh giá