Giải Vở thực hành Toán 8 (Kết nối tri thức) Bài Luyện tập chung trang 54

324

Toptailieu.vn biên soạn và giới thiệu giải Giải Vở thực hành Toán 8 (Kết nối tri thức) Bài Luyện tập chung trang 54 hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm các bài tập từ đó nâng cao kiến thức và biết cách vận dụng phương pháp giải vào các bài tập Toán 8. Mời các bạn cùng đón xem:

Giải Vở thực hành Toán 8 (Kết nối tri thức) Bài Luyện tập chung trang 54

Bài 1 trang 54 vở thực hành Toán 8 Tập 1: Trong các tứ giác ở Hình 3.24, tứ giác nào là hình bình hành? Vì sao?

 (ảnh 1)

Lời giải:

a) Tứ giác ABCD là hình bình hành vì có hai góc đối bằng nhau.

b) Tứ giác ABCD không là hình bình hành vì các góc đối ở đỉnh B và D không bằng nhau.

c) Tứ giác ABCD có các cạnh đối AD và BC song song (cùng tạo với đường thẳng DC hai góc đồng vị cùng bằng 80°), AD = BC nên là hình bình hành.

Bài 2 trang 55 vở thực hành Toán 8 Tập 1: Cho hình bình hành ABCD. Lấy điểm M thuộc cạnh AB và điểm N thuộc cạnh CD sao cho AM = CN. Chứng minh rằng:

a) AN = CM.

b) AMC^=ANC^.

Lời giải:

 (ảnh 2)

(H.3.25). a) ABCD là hình bình hành ⇒ AB // CD ⇒ AM // CN. Tứ giác AMCN có AM = CN, AM // CN ⇒ AMCN là hình bình hành.

⇒ AN = CM (hai cạnh đối của hình bình hành bằng nhau).

b) AMCN là hình bình hành AMC^=ANC^ (hai góc đối của hình bình hành bằng nhau).

Bài 3 trang 55 vở thực hành Toán 8 Tập 1: Cho hình bình hành ABCD có AB = 3 cm, AD = 5 cm.

a) Hỏi tia phân giác của góc A cắt cạnh CD hay cạnh BC?

b) Tính khoảng cách từ giao điểm đó đến điểm C.

Lời giải:

 (ảnh 3)

(H.3.26). a) Do ABCD là hình bình hành nên AD // BC, BC = AD = 5 cm.

Do BC = 5 cm nên có điểm E duy nhất trên cạnh BC sao cho BE = 3 cm.

Vì BE = AB ⇒ ∆BAE cân tại B BAE^=BEA^. (1)

Do AD // BC BEA^=EAD^ (hai góc so le trong). (2)

Từ (1) và (2), ta có BAE^=EAD^ hay tia AE là tia phân giác của góc BAD. Tia này không cắt cạnh CD.

b) Ta có EC = BC – BE = 5 – 3 = 2 (cm).

Bài 4 trang 55 vở thực hành Toán 8 Tập 1: Cho hình bình hành ABCD. Lấy điểm E sao cho B là trung điểm của AE, lấy điểm F sao cho C là trung điểm của DF. Chứng minh rằng:

a) Hai tứ giác AEFD, ABFC là những hình bình hành.

b) Các trung điểm của ba đoạn thẳng AF, DE, BC trùng nhau.

Lời giải:

 (ảnh 4)

(H.3.27). a) Do ABCD là hình bình hành nên AB // CD, DC = AB, suy ra AE // DF, AE = 2AB = 2CD = DF.

⇒ AEFD là hình bình hành.

Tương tự, tứ giác ABFC có các cạnh đối song song và bằng nhau nên ABFC là hình bình hành.

b) Vì AEFD là hình bình hành nên AF cắt ED tại trung điểm mỗi đường.

Vì ABFC là hình bình hành nên AF cắt BC tại trung điểm mỗi đường.

Vậy ba trung điểm của AF, DE, BC trùng nhau.

Bài 5 trang 56 vở thực hành Toán 8 Tập 1: Cho hình bình hành ABCD. Gọi H, K lần lượt là các chân đường cao kẻ từ đỉnh A, C xuống BD (H.3.28).

 (ảnh 5)


Chứng minh rằng:

a) ∆ADH = ∆CBK.

b) Tứ giác AHCK là hình bình hành.

c) AC đi qua trung điểm O của HK.

Lời giải:

a) Tứ giác ABCD là hình bình hành nên AD = BC, AD // BC D^1=B^1, (hai góc so le trong).

Xét ∆ADH và ∆CBK có AD = CB, D^1=B^1, AHD^=CKB^=90°.

⇒ ∆ADH = ∆CBK (g.c.g).

b) Từ giả thiết ta có: AH ⊥ BD, CK ⊥ BD ⇒ AH // CK (1).

∆ADH = ∆CBK ⇒ AH = CK (hai cạnh tương ứng bằng nhau). (2)

Từ (1) và (2) ta có tứ giác AHCK có hai cạnh đối song song và bằng nhau nên là hình bình hành.

c) Vì AHCK là hình bình hành nên có hai đường chéo cắt nhau tại trung điểm mỗi đường, do đó AC đi qua trung điểm O của HK.

Xem thêm Lời giải bài tập Vở thực hành Toán 8 Kết nối tri thức hay, chi tiết khác: 

Bài 12: Hình bình hành

Bài 13: Hình chữ nhật

Bài 14: Hình thoi và hình vuông

Luyện tập chung trang 63

Bài tập cuối chương 3

Đánh giá

0

0 đánh giá