Cho hình lập phương ABCD.A’B’C’D’ có AB = a. Chứng minh C’D ⊥ (BCD’), BD’ ⊥ C’D và (BC’D) ⊥ (BCD’)

183

Với Giải Bài 59 trang 119 SBT Toán 11 Tập 2 trong Bài tập cuối chương 8 Sách bài tập Toán lớp 11 Cánh Diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.

Cho hình lập phương ABCD.A’B’C’D’ có AB = a. Chứng minh C’D ⊥ (BCD’), BD’ ⊥ C’D và (BC’D) ⊥ (BCD’)

Bài 59 trang 119 SBT Toán 11 Tập 2Cho hình lập phương ABCD.A’B’C’D’ có AB = a.

a) Chứng minh C’D ⊥ (BCD’), BD’ ⊥ C’D và (BC’D) ⊥ (BCD’);

b) Tính góc giữa hai đường thẳng BD và A’D’;

c) Tính góc giữa đường thẳng BD và mặt phẳng (CDD’C’);

d) Tính số đo của góc nhị diện [B, DD’, C];

e) Tính khoảng cách từ điểm D đến mặt phẳng (BCD’);

g) Chứng minh B’C’ // (BCD’) và tính khoảng cách giữa đường thẳng B’C’ và mặt phẳng (BCD’);

h) Tính thể tích của khối tứ diện C’BCD và khoảng cách từ điểm C đến mặt phẳng (BC’D).

Lời giải:

Cho hình lập phương ABCD.A’B’C’D’ có AB = a. Chứng minh C’D ⊥ (BCD’), BD’ ⊥ C’D và (BC’D) ⊥ (BCD’)

a) Do ABCD.A’B’C’D’ là hình lập phương, nên ta có BC ⊥ (CDD’C’).

Mà C’D ⊂ (CDD’C’) nên BC ⊥ C’D.

Vì CDD’C’ là hình vuông nên C’D ⊥ CD’.

⦁ Ta có: C’D ⊥ BC, C’D ⊥ CD’, BC ∩ CD’ = C trong (BCD’)

Suy ra C’D ⊥ (BCD’).

⦁ Hơn nữa BD’ ⊂ (BCD’) nên C’D ⊥ BD’ hay BD’ ⊥ C’D.

⦁ Do C’D ⊥ (BCD’), C’D ⊂ (BC’D) nên (BC’D) ⊥ (BCD’).

b) Do ABCD.A’B’C’D’ là hình lập phương, nên ta có AD // A’D’.

Nên góc giữa hai đường thẳng BD và A’D’ bằng góc giữa hai đường thẳng BD và AD và bằng ADB^.

Do ABCD là hình vuông nên ADB^=45°.

Vậy góc giữa hai đường thẳng BD và A’D’ bằng 45°.

c) Do BC ⊥ (CDD’C’) nên góc giữa đường thẳng BD và mặt phẳng (CDD’C’) bằng góc giữa hai đường thẳng BD và CD và bằng BDC^.

Do ABCD là hình vuông nên BDC^=45°.

Vậy góc giữa đường thẳng BD và mặt phẳng (CDD’C’) bằng 45°.

d) Do ABCD.A’B’C’D’ là hình lập phương, nên ta có DD’ ⊥ (ABCD).

Mà BD ⊂ (ABCD) và CD ⊂ (ABCD) nên DD’ ⊥ BD và DD’ ⊥ CD.

Hơn nữa BD ∩ CD = D ∈ DD’.

Suy ra BDC^ là góc phẳng nhị diện của góc nhị diện [B, DD’, C].

Theo câu c ta có BDC^=45°.

Vậy số đo góc nhị diện [B, DD’, C] bằng 45°.

e) Gọi O là giao điểm của C’D và CD’.

Theo câu a ta có: C’D ⊥ (BCD’) nên DO ⊥ (BCD’) (do O ∈ C’D).

Như vậy: d(D, (BCD’)) = DO.

Áp dụng định lí Pythagore trong tam giác CC’D vuông tại C ta có: C'D=C'C2+CD2=a2+a2=a2.

Do CDD’C’ là hình vuông, O là giao điểm của C’D và CD’ nên OD=C'D2=a22.

Vậy khoảng cách từ điểm D đến mặt phẳng (BCD’) bằng a22.

g) Do ABCD.A’B’C’D’ là hình lập phương, nên ta có B’C’ // BC.

Mà BC ⊂ (BCD’), suy ra B’C’ // (BCD’).

Khi đó d(B’C’, (BCD’)) = d(C’, (BCD’)).

Theo câu a ta có C’D ⊥ (BCD’) nên C’O ⊥ (BCD’) (do O ∈ C’D).

Suy ra d(C’, (BCD’)) = C’O.

Do CDD’C’ là hình vuông, O là giao điểm của C’D và CD’ nên C'O=C'D2=a22.

Vậy dB'C',BCD'=C'O=a22.

h) ⦁ Do ABCD.A’B’C’D’ là hình lập phương, nên ta có CC’ ⊥ (ABCD) hay CC’ ⊥ (BCD).

Thể tích của khối tứ diện C’BCD có đường cao CC’ và đáy là tam giác BCD là: VC'BCD=13SBCD.CC'=13.12BC.CD.CC'

⦁ Do BC’, C’D, BD lần lượt là đường chéo của các hình vuông BCC’B’, CDD’C’, ABCD cạnh a.

Nên ta có BC'=BD=C'D=a2.

Suy ra BC’D là tam giác đều cạnh a2.

Trong tam giác BC’D đều cạnh a, kẻ đường cao BH (H ∈ C’D) (hình vẽ dưới đây).

Cho hình lập phương ABCD.A’B’C’D’ có AB = a. Chứng minh C’D ⊥ (BCD’), BD’ ⊥ C’D và (BC’D) ⊥ (BCD’)

Suy ra BH cũng là đường trung tuyến của tam giác BC’D hay H là trung điểm của C’D.

DH=C'D2=a22.

Áp dụng định lí Pythagore trong tam giác BHD vuông tại H có:

BD2 = BH2 + HD2

Suy ra BH=BD2HD2=a22a222=a62.

Ta có diện tích tam giác BC’D là:

SBC'D=12BH.C'D=12.a62.a2=a232.

Xét khối tứ diện C’BCD có C là đỉnh, BC’D là đáy thì ta có công thức khác có thể tính thể tích của khối tứ diện C’BCD là:

VC'BCD=13SBC'DdC,BC'D.

dC,BC'D=3VC'BCDSBC'D=3.a36a232=a33.

Vậy khoảng cách từ điểm C đến mặt phẳng (BC’D) bằng a33.

Đánh giá

0

0 đánh giá