Tính đạo hàm của hàm số: y = ax^2 (a là hằng số) tại điểm x0 bất kì

230

Với Giải Bài 9.4 trang 57 SBT Toán 11 Tập 2 trong Bài 31: Định nghĩa và ý nghĩa của đạo hàm Sách bài tập Toán lớp 11 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.

Tính đạo hàm của hàm số: y = ax^2 (a là hằng số) tại điểm x0 bất kì

Bài 9.4 trang 57 SBT Toán 11 Tập 2Tính đạo hàm của hàm số:

a) y = ax2 (a là hằng số) tại điểm x0 bất kì.

b) y=1x1 tại điểm x0 bất kì, x0 ≠ 1.

Lời giải:

a) Đặt y = f(x) = ax2.

Ta có y'(x0) = limxx0fxfx0xx0=limxx0ax2ax02xx0

=limxx0ax2x02xx0=limxx0axx0x+x0xx0

Tính đạo hàm của hàm số y = ax^2 (a là hằng số)

Vậy y'(x0) = 2ax0.

b) Đặt y = f(x) = 1x-1.

Ta có y'(x0) = limxx0fxfx0xx0=limxx01x11x01xx0

=limxx0x01x1x1x01xx0=limxx0x0xx1x01xx0

=limxx01x1x01=1x012.

Vậy y'x0=1x012 , x0 ≠ 1.

Đánh giá

0

0 đánh giá