Toptailieu biên soạn và giới thiệu lời giải Toán 8 Bài 2 (Cánh diều): Ứng dụng của định lí Thalès trong tam giác hay, chi tiết sẽ giúp học sinh dễ dàng trả lời câu hỏi SGK Toán 8 Bài 2 từ đó học tốt môn Toán 8.
Toán 8 Bài 2 (Cánh diều): Ứng dụng của định lí Thalès trong tam giác
Giải Toán 8 trang 58 Tập 2
Vào thời điểm xảy ra Nhật thực (Nguyệt thực), đường kính của Mặt Trời và Mặt Trăng có tỉ lệ với khoảng cách từ Trái Đất đến Mặt Trời và đến Mặt Trăng hay không?
Lời giải:
Sau bài học này, chúng ta sẽ giải quyết được câu hỏi trên như sau:
Hình vẽ trên mô tả vị trí tương đối của Mặt Trời, Mặt Trăng và Trái Đất khi xảy ra hiện tượng Nhật thực.
Gọi khoảng cách từ Trái Đất đến Mặt Trời, Mặt Trăng lần lượt là dS = ES; dm = EM.
Gọi bán kính của Mặt Trời, Mặt Trăng lần lượt là RS = SH và RM = MI.
Xét tam giác EHS, ta có nên MI // SH.
Do đó, áp dụng hệ quả của định lí Thalès, ta có:
Vậy hay vào thời điểm xảy ra Nhật thực, đường kính của Mặt Trời và Mặt Trăng tỉ lệ với khoảng cách từ Trái Đất đến Mặt Trời và đến Mặt Trăng.
Ta cũng có kết quả trên tương ứng với thời điểm xảy ra Nguyệt thực.
I. Ước lượng khoảng cách
Giải Toán 8 trang 59 Tập 2
Lời giải:
Độ dài của cái thước là cạnh huyền của một tam giác vuông CED có hai cạnh góc vuông là EC và ED.
Ta có: ED có độ dài bằng 6 lần độ dài cạnh của một ô vuông. Nên ta có thể lấy hai điểm F, H sao cho chia đoạn ED thành ba đoạn, mỗi đoạn có độ dài bằng 2 lần độ dài cạnh của một ô vuông.
Từ F và H ta kẻ hai đường thẳng song song với cạnh EC cắt cạnh CDlần lượt tại G và I.
Theo định lí Thalès, ta chứng minh được DI = IG = GC (cùng bằng ).
Vậy ta có thể chia được cái thước thành ba phần bằng nhau mà không sử dụng thước đo.
II. Ước lượng chiều cao
Giải Toán 8 trang 60 Tập 2
Lời giải:
Đoạn thẳng AB biểu thị cho độ cao của cây, đoạn thẳng AM và MB lần lượt biểu thị độ cao của thân và tán cây, đoạn thẳng AN và NC lần lượt biểu thị độ dài cái bóng của thân cây và tán cây, đoạn thẳng MN và BC lần lượt biểu thị cho các tia nắng.
Xét ∆ABC vớiMN // BC, ta có: (định lí Thalès)
Suy ra
Do đó
Vậy độ cao x = 1,2 m.
Bài tập
Lời giải:
Do DE ⊥ AC, AB ⊥ AC nên DE // AB.
Xét ∆ABC với DE // AB, ta có:
(hệ quả của định lí Thalès)
Suy ra
Suy ra
Vậy khoảng cách giữa hai vị trí A và B là 45 m.
Giải Toán 8 trang 61 Tập 2
Hình 25 thể hiện cách đo chiều cao AB của một bức tường bằng các dụng cụ đơn giản gồm: hai cọc thẳng đứng (cọc cố định; cọc có thể di động được) và sợi dây FC. Cọc có chiều cao DK = h. Các khoảng cách BC = a, DC = b đo được bằng thước dây thông dụng.
a) Em hãy cho biết người ta tiến hành đo đạc như thế nào?
b) Tính chiều cao AB theo h, a, b.
Lời giải:
a) Cách tiến hành:
⦁ Vì cọc 2 di động được nên di chuyển cọc sao cho cọc trùng với AB, cụ thể F trùng với A, E trùng với B.
⦁ Lúc này cọc song song với AB. Do đó, ta có tỉ lệ giữa chiều cao của cọc và AB bằng với tỉ lệ giữa khoảng cách DC và BC. Từ đó ta tính được chiều cao AB của bức tường thông qua hệ quả của định lí Thalès.
b) Xét ∆ABC với AB // KD (D ∈ BC, K ∈ AC), ta có:
(hệ quả định lí Thalès)
Suy ra
Vậy chiều cao
Lời giải:
Xét ∆ECC’với DD’ // CC’, ta có: (định lí Thalès)
Suy ra (1)
Xét ∆EBB’với DD’ // BB’, ta có: (định lí Thalès)
Suy ra (2)
Từ (1) và(2) ta có (4)
Xét ∆EAA’với DD’ // AA’, ta có: (định lí Thalès)
Suy ra (3)
Từ (2) và (3) ta có (5)
Từ (4) và (5) ta có .
•Anh Thiện chọn vị trí Cở trên bờ sông sao cho A, B, C thẳng hàng và đo được BC = 4m;
•Tiếp theo, anh Thiện xác định vị trí D, chị Lương xác định vị trí E sao cho D, B, E thẳng hàng, đồng thời
•Anh Thiện đo được CD = 2m, chị Lương đo được AE = 12m.
Hãy tính khoảng cách giữa hai vị trí A và B.
Lời giải:
Ta có: AE ⊥ AC, CD ⊥ AC nên AE // CD.
Xét ∆ABE với AE // CD, ta có: (hệ quả của định lí Thalès)
Suy ra
Do đó
Vậy khoảng cách AB là 24 m.
Xem thêm Lời giải bài tập Toán 8 Cánh diều hay, chi tiết khác:
Bài 1: Định lí Thalès trong tam giác
Bài 3: Đường trung bình của tam giác
Bài 4: Tính chất đường phân giác của tam giác
Bài 6: Trường hợp đồng dạng thứ nhất của tam giác
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.