30 câu trắc nghiệm Quy tắc đếm (có đáp án) chọn lọc

371

Toptailieu.vn xin giới thiệu 30 câu trắc nghiệm Quy tắc đếm (có đáp án) chọn lọc, hay nhất giúp học sinh lớp 11 ôn luyện kiến thức để đạt kết quả cao trong các bài thi môn Toán. Tài liệu gồm có các nội dung chính sau:

Mời các bạn đón xem:

30 câu trắc nghiệm Quy tắc đếm (có đáp án) chọn lọc

Câu 1: Một lớp có 23 học sinh nữ và 17 học sinh nam.

a) Hỏi có bao nhiêu cách chọn một học sinh tham gia cuộc thi tìm hiểu môi trường?

A. 23        

B. 17

C. 40        

D. 391

b) Hỏi có bao nhiêu cách chọn hai học sinh tham gia hội trại với điều kiện có cả nam và nữ?

A. 40        

B. 391

C. 780        

D. 1560

Lời giải:

a) Theo quy tắc cộng có: 23 +17 = 40 cách chọn một học sinh tham gia cuộc thi môi trường. Vì vậy chọn đáp án C

b) Việc chọn hai học sinh (nam và nữ) phải tiến hành hai hành động liên tiếp

Hành động 1: chọn 1 học sinh nữ trong số 23 học sinh nữ nên có 23 cách chọn

Hành động 2: chọn 1 học sinh nam nên có 17 cách chọn

Theo quy tắc nhân, có 23.17 = 391 cách chọn hai học sinh tham gia hội trại có cả nam và nữ.

Vì vậy chọn phương án B

Câu 2: Một túi có 20 viên bi khác nhau trong đó có 7 bi đỏ, 8 bi xanh và 5 bi vàng

a) Số cách lấy 3 viên bi khác màu là

A. 20        

B. 280

C. 6840        

D. 1140

b) Số cách lấy 2 viên bi khác màu là:

A. 40        

B. 78400

C. 131        

D. 2340

Lời giải:

a) Việc chọn 3 viên bi khác màu phải tiến hành 3 hành động liên tiếp: chọn 1 bi đỏ trong 7 bi đỏ nên có 7 cách chọn, tương tự có 8 cách chọn 1 bi xanh và 5 cách chọn 1 bi vàng. Theo quy tắc nhân ta có: 7.8.5 = 280 cách. Vậy đáp án là B

b) Muốn lấy được 2 viên bi khác màu từ trong túi đã cho xảy ra các trường hợp sau:

- Lấy 1 bi đỏ và 1 bi xanh: có 7 cách để lấy 1 bi đỏ và 8 cách để lấy 1 bi xanh. Do đó có 7.8 = 56 cách lấy

- Lấy 1 bi đỏ và 1 bi vàng: có 7 cách lấy 1 bi đỏ và 5 cách lấy 1 bi vàng. Do đó co 7.5 = 35 cách lấy

- Lấy 1 bi xanh và 1 bi vàng: có 8 cách để lấy 1 bi xanh và 5 cách để lấy 1 bi vàng. Do đó có 8.5 = 40 cách để lấy

- Áp dụng quy tắc cộng cho 3 trường hợp, ta có 56 + 35 + 40 = 131 cách

Vì vậy chọn đáp án là C

Câu 3: Từ các số 0,1,2,3,4,5 có thể lập được:

a) Bao nhiêu số có hai chữ số khác nhau và chia hết cho 5?

A. 25        

B. 10

C. 9        

D. 20  b) Bao nhiêu số có 3 chữ số khác nhau chia hết cho 3?

A. 36        

B. 42

C. 82944        

D. Một kết quả khác

c) Bao nhiêu số có ba chữ số (không nhất thiết khác nhau) và là số chẵn?

A. 60        

B. 90

C. 450        

D. 100

Lời giải:

Gọi tập hợp E = {0,1,2,3,4,5}

a) Số tự nhiên có hai chữ số khác nhau có dạng:

 (ảnh 1)

Với b = 0 thì có 5 cách chọn a ( vì a ≠ 0)

Với b = 5 thì có 4 cách chọn a ( vì a ≠ b và a ≠ 0)

Theo quy tắc cộng, có tất cả 5 + 4 = 9 số tự nhiên cần tìm. Chọn đáp án là C.

b) Số tự nhiên có ba chữ số khác nhau có dạng

 (ảnh 2)

Trong E có các bộ chữ số thoả mãn (*) là:

(0,1,2);(0,1,5);(0,2,4);(1,2,3);(1,3,5);(2,3,4);(3,4,5)

Mỗi bộ gồm ba chữ số khác nhau và khác 0 nên ta viết được 3.2.1 = 6 số có ba chữ số chia hết cho 3

Mỗi bộ gồm ba chữ số khác nhau và có một chữ số 0 nên ta viết được 2.2.1 = 4 số có ba chữ số chia hết cho 3

Vậy theo quy tắc cộng ta có: 6.4 + 4.3 = 36 số có 3 chữ số chia hết cho 3

Chọn đáp án là A

c) Số tự nhiên có 3 chữ số có dạng

 (ảnh 3)

Có ba cách chọn chữ số c ( vì c {0,2,4}).

Ứng với mỗi cách chọn c , có 6 cách chọn chữ số b (vì b E)

Ứng với mỗi cách chọn c, b có 5 cách chọn chữ số a (vì a E và a≠ 0)

Áp dụng quy tắc nhân ta có 3.6.5 = 90 số có 3 chữ số. Vì vậy đáp án là B

Câu 4: Giả sử bạn muốn mua một áo sơ mi size S hoặc size M. Áo size S có 5 màu khác nhau, áo size M có 4 màu khác nhau. Hỏi có bao nhiêu sự lựa chọn (về màu áo và cỡ áo)?

A. 9

B. 5

C. 4

D. 20

Lời giải:

Nếu chọn áo size S thì sẽ có 5 cách.

Nếu chọn áo size M thì sẽ có 4 cách.

Theo qui tắc cộng, ta có 5+ 4= 9 cách chọn mua áo.

Chọn đáp án A

Câu 5: Một người có 4 cái quần khác nhau, 6 cái áo khác nhau, 3 chiếc cà vạt khác nhau. Để chọn một cái quần hoặc một cái áo hoặc một cái cà vạt thì số cách chọn khác nhau là:

A.13

B. 72

C. 12

D. 30

Lời giải:

Nếu chọn một cái quần thì sẽ có 4 cách.

Nếu chọn một cái áo thì sẽ có 6 cách.

Nếu chọn một cái cà vạt thì sẽ có 3 cách.

Theo qui tắc cộng, ta có 4 + 6 + 3 = 13 cách chọn.

Chọn đáp án A

Câu 6: Trong một trường THPT, khối 11 có 280 học sinh nam và 325 học sinh nữ. Nhà trường cần chọn một học sinh ở khối 11 đi dự dạ hội của học sinh thành phố. Hỏi nhà trường có bao nhiêu cách chọn?

A. 280

B. 325

C. 45

D. 605

Lời giải:

Nếu chọn một học sinh nam có 280 cách.

Nếu chọn một học sinh nữ có 325 cách.

Theo qui tắc cộng, ta có 280 + 325 = 605 cách chọn.

Chọn đáp án D

Câu 7: Trong một hộp chứa sáu quả cầu trắng được đánh số từ 1 đến 6 và ba quả cầu đen được đánh số 7, 8, 9. Có bao nhiêu cách chọn một trong các quả cầu ấy?

A. 27

B. 9

C. 6

D.3

Lời giải:

Vì các quả cầu trắng hoặc đen đều được đánh số phân biệt nên mỗi lần lấy ra một quả cầu bất kì là một lần chọn.

Nếu chọn một quả trắng có 6 cách.

Nếu chọn một quả đen có 3 cách.

Theo qui tắc cộng, ta có 6 + 3 = 9 cách chọn.

Chọn đáp án B

Câu 8: Giả sử từ tỉnh A đến tỉnh B có thể đi bằng các phương tiện: ô tô, tàu hỏa, tàu thủy hoặc máy bay. Mỗi ngày có 10 chuyến ô tô, 5 chuyến tàu hỏa, 3 chuyến tàu thủy và 2 chuyến máy bay. Hỏi có bao nhiêu cách đi từ tỉnh A đến tỉnh B?

A.20

B. 300

C. 18

D. 15

Lời giải:

Nếu đi bằng ô tô có 10 cách.

Nếu đi bằng tàu hỏa có 5 cách.

Nếu đi bằng tàu thủy có 3 cách.

Nếu đi bằng máy bay có 2 cách.

Theo qui tắc cộng, ta có 10 + 5+ 3+ 2= 20 cách chọn.

Chọn đáp án A

Câu 9: Có 3 kiểu mặt đồng hồ đeo tay (vuông, tròn, elip) và 4 kiểu dây (kim loại, da, vải và nhựa). Hỏi có bao nhiêu cách chọn một chiếc đồng hồ gồm một mặt và một dây?

A. 4

B. 7

C.12

D. 24
Lời giải:

Để chọn một chiếc đồng hồ, ta có:

Có 3 cách chọn mặt.

Có 4 cách chọn dây.

Vậy theo qui tắc nhân ta có:3.4 = 12 cách.

Chọn đáp án C

Câu 10: Một người có 4 cái quần, 6 cái áo, 3 chiếc cà vạt. Để chọn mỗi thứ một món thì có bao nhiều cách chọn bộ quần-áo-cà vạt khác nhau?

A. 13.

B. 72.

C. 12.

D. 30.

Lời giải:

Để chọn một bộ quần-áo-cà vạt , ta có:

Có 4 cách chọn quần.

Có 6 cách chọn áo.

Có 3 cách chọn cà vạt.

Vậy theo qui tắc nhân ta có : 4.6.3 = 72 cách.

Chọn đáp án B

Câu 11: Một bó hoa có 5 hoa hồng trắng, 6 hoa hồng đỏ và 7 hoa hồng vàng. Hỏi có mấy cách chọn lấy ba bông hoa có đủ cả ba màu.

A.240

B. 210

C. 18

D. 120

Lời giải:

Để chọn ba bông hoa có đủ cả ba màu (nghĩa là chọn một bông hoa hồng trắng- một bông hoa hồng đỏ- hoa hồng vàng), ta có:

Có 5 cách chọn hoa hồng trắng.

Có 6 cách chọn hoa hồng đỏ.

Có 7 cách chọn hoa hồng vàng.

Vậy theo qui tắc nhân ta có 5.6.7 = 210 cách.

Chọn đáp án B

Câu 12: Một người vào cửa hàng ăn, người đó chọn thực đơn gồm một món ăn trong năm món, một loại quả tráng miệng trong năm loại quả tráng miệng và một nước uống trong ba loại nước uống. Có bao nhiêu cách chọn thực đơn.

A. 25

B. 75

C. 100

D. 15

Lời giải:

Để chọn thực đơn, ta có:

Có 5 cách chọn món ăn.

Có 5 cách chọn quả tráng miệng.

Có 3 cách chọn nước uống.

Vậy theo qui tắc nhân ta có 5.5.3 = 75 cách.

Chọn đáp án B

Câu 13: Có 10 cặp vợ chồng đi dự tiệc. Tổng số cách chọn một người đàn ông và một người phụ nữ trong bữa tiệc phát biểu ý kiến sao cho hai người đó không là vợ chồng?

A. 100

B. 91

C.10

D. 90

Lời giải:

Để chọn một người đàn ông và một người phụ nữ không là vợ chồng, ta có

Có 10 cách chọn người đàn ông.

Có 9 cách chọn người phụ nữ ( trừ 1 người là vợ của người đàn ông đã chọn trước đó).

Vậy theo qui tắc nhân ta có 10.9 = 90 cách.

Chọn đáp án D

Câu 14: Các thành phố A, B, C, D được nối với nhau bởi các con đường như hình vẽ. Hỏi có bao nhiêu cách đi từ A đến D mà qua B và C chỉ một lần?

 (ảnh 4)

A. 9.

B. 10.

C. 18.

D. 24.

Lời giải:

Từ A đến B có 4 cách.

Từ B đến C có 2 cách.

Từ C đến D có 2 cách.

Vậy theo qui tắc nhân ta có 4.2.3 = 24 cách.

Chọn đáp án D

Câu 15: Trong một tuần bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (thăm một bạn không quá một lần)?

A. 3 991 680

B. 4309440

C. 84

D. 63

Lời giải:

Một tuần có bảy ngày và mỗi ngày thăm một bạn.

Có 12 cách chọn bạn vào ngày thứ nhất.

Có 11 cách chọn bạn vào ngày thứ hai ( khác bạn ngày thứ nhất).

Có 10 cách chọn bạn vào ngày thứ ba ( khác bạn ngày thứ nhất, thứ 2)

Có 9 cách chọn bạn vào ngày thứ tư.

Có 8 cách chọn bạn vào ngày thứ năm.

Có 7 cách chọn bạn vào ngày thứ sáu.

Có 6 cách chọn bạn vào ngày thứ bảy.

Vậy theo qui tắc nhân ta có 12.11.10.9.8.7.6 = 3 991 680 cách.

Chọn đáp án A

Câu 16: Số 253125000 có bao nhiêu ước số tự nhiên?

A. 160

B.240

C. 180

D. 120

Lời giải:

Ta có 253125000 = 23.34.58 nên mỗi ước số tự nhiên của số đã cho đều có dạng 2m*3n*5p trong đó m, n, p ≠ N sao cho 0 ≤ m ≤ 3; 0 ≤ n ≤ 4; 0 ≤ p ≤ 8.

Có 4 cách chọn m; m {0; 1; 2; 3}

Có 5 cách chọn n; n {0; 1; 2; 3; 4}

Có 9 cách chọn p; p {0; 1; 2; 3; 4; ....; 8}

Vậy theo qui tắc nhân ta có: 4.5.9 = 180 ước số tự nhiên.

Chọn đáp án C

Câu 17: Từ các chữ số 1; 5; 6; 7 có thể lập được bao nhiêu chữ số tự nhiên có 4 chữ số (không nhất thiết phải khác nhau) ?

A. 324

B. 256

C. 248

D. 124

Lời giải:

Gọi số cần tìm có dạng abcd với (a, b, c, d) A = {1, 5, 6, 7}.

Vì số cần tìm có 4 chữ số không nhất thiết khác nhau nên:

a được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.

b được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.

c được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.

d được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.

Như vậy, ta có 4.4.4.4 = 256 số cần tìm.

Chọn đáp án B

Câu 18: Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu chữ số tự nhiên bé hơn 100 ?

A. 36

B.62

C. 54

D. 42

Lời giải:

Các số bé hơn 100 chính là các số có một chữ số và hai chữ số được hình thành từ tập A = {1, 2, 3, 4, 5, 6}.

Từ tập A có thể lập được 6 số có một chữ số.

Gọi số có hai chữ số có dạng ab với (a, b) A.

Trong đó:

a được chọn từ tập A (có 6 phần tử) nên có 6 cách chọn.

b được chọn từ tập A (có 6 phần tử) nên có 6 cách chọn.

Như vậy, ta có 6.6 = 36 số có hai chữ số.

Vậy, từ A có thể lập được 6 + 36 = 42 số tự nhiên bé hơn 100.

Chọn đáp án D

Câu 19: Từ các chữ số 0; 1; 2; 3 ;4; 5 có thể lập được bao nhiêu số lẻ gồm 4 chữ số khác nhau ?

A. 154

B. 145

C. 144

D. 155

Lời giải:

Gọi số cần tìm có dạng abcd với (a, b, c, d) A = {0, 1, 2, 3, 4, 5}.

Vì abcd là số lẻ d = {1, 3, 5} d có 3 cách chọn.

Khi đó, a có 4 cách chọn (khác 0 và d),.

b có 4 cách chọn và c có 3 cách chọn.

Vậy có tất cả 3.4.4.3 = 144 số cần tìm.

Chọn đáp án C

Câu 20: Từ các chữ số 0; 1; 2; 3; 4; 5 có thể lập được bao nhiêu số chẵn gồm 4 chữ số khác nhau ?

A. 156

B. 144

C.96

D. 134

Lời giải:

Gọi số cần tìm có dạng abcd với (a, b, c, d) A= {0, 1, 2, 3, 4, 5}.

Vì abcd là số chẵn d = {0, 2, 4}.

TH1. Nếu d = 0, số cần tìm là abc0 Khi đó:

a được chọn từ tập A\{0} nên có 5 cách chọn.

b được chọn từ tập A\{0, a} nên có 4 cách chọn.

c được chọn từ tập A\{0, a, b} nên có 3 cách chọn.

Như vậy, ta có 5.4.3 = 60 số có dạng abc0

TH2. Nếu d {2, 4} d có 2 cách chọn.

Khi đó, a có 4 cách chọn (khác 0 và d),

b có 4 cách chọn và c có 3 cách chọn.

Như vậy, ta có 2.4.4.3 = 96 số cần tìm như trên.

Vậy có tất cả 60 +96 = 156 số cần tìm.

Chọn đáp án A

Câu 21: Sắp xếp 5 học sinh lớp A và 5 học sinh lớp B vào hai dãy ghế đối diện nhau, mỗi dãy 5 ghế sao cho 2 học sinh ngồi đối diện nhau thì khác lớp. Khi đó số cách xếp là:

A. 460000.

B. 460500.

460800.

460900.

Lời giải:

Cách 1: Có tất cả 5 cặp ghế ngồi đối diện

Cặp 1: Học sinh đầu tiên, giả sử đó là học sinh lớp A có 10 cách chọn ghế.

Có 5 cách chọn ra một học sinh lớp B ngồi vào ghế đối diện.

Cặp  2: Có 8 cách chọn ra một học sinh lớp A ( hoặc lớp B) vào ghế tiếp theo.

Có 4 cách chọn ra học sinh lớp B ( hoặc lớp A) vào ghế đối diện.

Cặp 3: Có 6 cách chọn ra học sinh lớp A ( hoặc lớp B)

Có 3 cách chọn học sinh lớp B ( hoặc lớp A) vào ghế đối diện.

Cặp 4: Có 4 cách chọn học sinh lớp A ( hoặc lớp B) vào ghế tiếp.

Có 2 cách chọn học sinh lớp B ( hoặc lớp A) vào ghế đối diện.

Cặp 5: Có 2 cách chọn học sinh lớp A ( hoặc lớp B)   vào ghế kế tiếp.

Có 1 cách chọn học sinh lớp B ( hoặc lớp A) vào ghế đối diện.

Theo quy tắc nhân thì có 10.5.8.4.6.3.4.2.2.1=460800 cách.

Cách 2:

Vì 2 học sinh ngồi đối diện nhau thì khác lớp nên mỗi cặp ghế đối diện nhau sẽ được xếp bởi 1 học sinh lớp A và 1 học sinh lớp B.

Số cách xếp 5 học sinh lớp A vào 5 cặp ghế là 5! cách. Số cách xếp 5 học sinh lớp B vào 5 cặp ghế là 5! cách. Số cách xếp chỗ ở mỗi cặp ghế là 2 cách.

Theo quy tắc nhân thì có =460800  cách.

Đáp án cần chọn là: C

Câu 22: Cho X={0,1,2,3,4,5,6,7}. Có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau đôi một từ X sao cho một trong 3 chữ số đầu tiên phải có mặt chữ số 1

A. 2280 số.

B. 840 số.

C. 1440 số.

D. 2520 số.

Lời giải:

Gọi số tự nhiên cần tìm là abcde¯ (a≠0)

TH1: Nếu a=1 khi đó:

Có 1 cách chọn a.

Có 7 cách chọn b.

Có 6 cách chọn c.

Có 5 cách chọn d.

Có 4 cách chọn e.

Áp dụng quy tắc nhân ta có: 1.7.6.5.4=840 số.

TH2: Nếu a≠1 khi đó:

Có 6 cách chọn a.

Có 2 cách xếp vị trí cho chữ số 1 là b hoặc c.

Cách xếp các chữ số còn lại có 6.5.4 = 120 cách.

Áp dụng quy tắc nhân ta có: 6.2.120 = 1440 số.

Vậy theo quy tắc cộng ta có: 840 + 1440 = 2280 số.

 Đáp án cần chọn là: A

Câu 23: Trong kì thi tuyển nhân viên chuyên môn cho công ty cổ phần Giáo dục trực tuyến VEDU, ở khối A có  thí sinh đạt điểm giỏi môn Toán,  thí sinh đạt điểm giỏi môn Vật lí,  thí sinh đạt điểm giỏi môn Hóa học,  thí sinh đạt điểm giỏi cả hai môn Toán và Vật lí,  thí sinh đạt điểm giỏi cả hai môn Vật lí và Hóa học,  thí sinh đạt điểm giỏi cả hai môn Toán và Hóa học,  thí sinh đạt điểm giỏi cả ba môn Toán, Vật lí và Hóa học. Có thí sinh mà cả ba môn đều không có điểm giỏi. Hỏi có bao nhiêu thí sinh tham dự tuyển nhân viên chuyên môn cho công ty?

A. 867.

B. 776.

264.

767.

Lời giải:

Kí hiệu  tương ứng là tập hợp các thí sinh đạt điểm giỏi ở ít nhất một trong ba môn là Toán, Vật lý, Hóa học.

Lúc này ta có  là tập hợp các học sinh đạt điểm giỏi ở ít nhất một trong ba môn là Toán, Vật lý, Hóa học. Ta có: 

100+767=867.

Chọn đáp án A.

Câu 24: Có bao nhiêu cách sắp xếp 8 viên bi đỏ khác nhau và 8 viên bi đen khác nhau thành một dãy sao cho hai viên bi cùng màu thì không được ở cạnh nhau?

A. 3251404800.

B. 1625702400.

C. 72.

D. 36.

 Lời giải:

Nhận xét: Bài toán là sự kết hợp giữa quy tắc cộng và quy tắc nhân.

Do hai viên bi cùng màu không được ớ cạnh nhau nên ta có trường hợp sau:

Phương án 1: Các bi đỏ ở vị trí lẻ. Có 8 cách chọn bi đỏ ở vị trí số 1.

Có 7 cách chọn bi đỏ ờ vị trí số 3.

….

Có 1 cách chọn bi đỏ ờ vị trí số 15.

Suy ra có 8.7.6...3.2.18.7.6...3.2.1 cách xếp 8 bi đỏ.Tương tự có 8.7.6...3.2.18.7.6...3.2.1 cách xếp  bi xanh.

Vậy có (8.7.6...3.2.1)28.7.6...3.2.12 cách xếp.

Phương án 2: Các bi đỏ ở vị trí chẵn ta cũng có cách xếp tương tự.

Vậy theo quy tắc cộng ta có (8!)2+(8!)2=32514048008!2+8!2=3251404800.

Chọn đáp án A.


Câu 25: Có 20 cặp vợ chồng tham dự chương trình Gameshow truyền hình thực tế. Có bao nhiêu cách chọn ra hai cặp đôi sao cho hai cặp đó là hai đôi vợ chồng?

A. 380.

B. 116280.

C. 90.

D. 5040.

Lời giải:

Bước 1: Có 20 cách chọn người đàn ông đầu tiên.

Bước 2: Sau đó chi có 1 cách chọn vợ của anh ta.

Bước 3: Có 19 cách chọn người đàn ông tiếp theo.

Bước 4: Sau đó chi có 1 cách chọn vợ của anh ta.

Vậy theo quy tắc nhân thì có 20.1.19.1=38020.1.19.1=380 cách.

Chọn đáp án A.

Câu 25:  Một bộ ghép hình gồm các miếng gỗ. Mỗi miếng gỗ được đặc trưng bởi 4 tiêu chuẩn: chất liệu, màu sắc, hình dạng và kích cỡ. Biết rằng có 2 chất liệu (gỗ, nhựa); có 4 màu (xanh, đỏ, lam, vàng); có  hình dạng (hình tròn, vuông, tam giác, lục giác) và có 3 kích cỡ (nhỏ, vừa, lớn). Xét miếng gỗ “nhựa, đỏ, hình tròn, vừa”. Hỏi có bao nhiêu miếng gỗ khác miếng gỗ trên ở đúng hai tiêu chuẩn?

A. 29.

B. 39.

C. 48.

D. 56.

Lời giải:

Có C24=6C42=6 cách chọn 2 trong 4 tiêu chuẩn.

Với hai tiêu chuẩn “chất liệu, cỡ” thì có 1.2=21.2=2 miếng khác ở đúng tiêu chuẩn này.

Với hai tiêu chuẩn “chất liệu, màu” thì có 1.3=31.3=3 miếng khác ở đúng tiêu chuẩn này.

Với hai tiêu chuẩn “chất liệu, dạng” thì có 1.3=3 miếng khác ở đúng tiêu chuẩn này.

Với hai tiêu chuẩn “cỡ, dạng” thì có 2.3=62.3=6 miếng khác ở đúng tiêu chuẩn này.

Với hai tiêu chuẩn “cỡ, màu” thì có 3.3=93.3=9 miếng khác ở đúng tiêu chuẩn này.

Tóm lại có 2+3+3+6+6+9=292+3+3+6+6+9=29 miếng.

Chọn đáp án A. 

Câu 26: Một đoàn tàu có bốn toa đỗ ở sân ga. Có bốn hành khách bước lên tàu. Số trường hợp có thể xảy ra về cách chọn toa của bốn khách là:

A. 24.

B. 256.

C. 232.

D. 1.

Lời giải:

Chọn toa cho vị khách thứ nhất có 4 cách.

Chọn toa cho vị khách thứ hai có 4 cách.

Chọn toa cho vị khách thứ ba có 4 cách.

Chọn toa cho vị khách thứ tư có 4 cách.

Theo quy tắc nhân thì có 44=25644=256 cách chọn toa cho bốn khách.

Chọn đáp án B. 

Câu 27: Một bó hoa có 5 hoa hồng trắng, 6 hoa hồng đỏ và 7 hoa hồng vàng. Hỏi có mấy cách chọn lấy ba bông hoa có đủ cả ba màu.

A.240

B. 210

C. 18

D. 120

Để chọn ba bông hoa có đủ cả ba màu (nghĩa là chọn một bông hoa hồng trắng- một bông hoa hồng đỏ- hoa hồng vàng), ta có:

Có 5 cách chọn hoa hồng trắng.

Có 6 cách chọn hoa hồng đỏ.

Có 7 cách chọn hoa hồng vàng.

Vậy theo qui tắc nhân ta có 5.6.7 = 210 cách.

Chọn đáp án B

Câu 28: Một lớp có 25 học sinh khá môn Toán, 24 học sinh khá môn Ngữ Văn, 10 học sinh khá cả môn Toán và môn Ngữ Văn và 3 học sinh không khá cả Toán và Ngữ Văn. Hỏi lớp học đó có bao nhiêu học sinh?

A. 39.

B. 42.

C. 62.

D. 52.

Lời giải:

Gọi AA là tập các học sinh khá môn Toán, BB là tập các học sinh khá môn Ngữ Văn.

Theo đề ta có: |A|=25; |B|=24; |AB|=10A=25; B=24; A∩B=10.

Theo quy tắc tính số phần tử của hợp hai tập hợp hữu hạn bất kì ta có:

|AB|=|A|+|B|−|AB|=25+24−10=39AB=A+B-A∩B=25+24-10=39

Vậy lớp học có 39+3=4239+3=42 học sinh.

 Chọn đáp án B.

Câu 29: Một người vào cửa hàng ăn, người đó chọn thực đơn gồm một món ăn trong năm món, một loại quả tráng miệng trong năm loại quả tráng miệng và một nước uống trong ba loại nước uống. Có bao nhiêu cách chọn thực đơn.

A. 25

B. 75

C. 100

D. 15

Để chọn thực đơn, ta có:

Có 5 cách chọn món ăn.

Có 5 cách chọn quả tráng miệng.

Có 3 cách chọn nước uống.

Vậy theo qui tắc nhân ta có 5.5.3 = 75 cách.

Chọn đáp án B

Câu 30: Có 10 cặp vợ chồng đi dự tiệc. Tổng số cách chọn một người đàn ông và một người phụ nữ trong bữa tiệc phát biểu ý kiến sao cho hai người đó không là vợ chồng?

A. 100

B. 91

C.10

D. 90

Để chọn một người đàn ông và một người phụ nữ không là vợ chồng, ta có

Có 10 cách chọn người đàn ông.

Có 9 cách chọn người phụ nữ ( trừ 1 người là vợ của người đàn ông đã chọn trước đó).

Vậy theo qui tắc nhân ta có 10.9 = 90 cách.

Chọn đáp án D

Từ khóa :
Toán 11
Đánh giá

0

0 đánh giá