Lý thuyết Hai đường thẳng vuông góc (Cánh diều) hay, chi tiết | Lý thuyết Toán 11

138

Toptailieu.vn xin giới thiệu Lý thuyết Hai đường thẳng vuông góc (Cánh diều) hay, chi tiết | Lý thuyết Toán 11 Bài viết gồm phần lý thuyết trọng tâm nhất được trình bày một cách dễ hiểu, dễ nhớ bên cạnh đó là bộ câu hỏi trắc nghiệm có hướng dẫn giải chi tiết để học sinh có thể vận dụng ngay lý thuyết, nắm bài một cách hiệu quả nhất. Mời các bạn đón xem:

Lý thuyết Hai đường thẳng vuông góc (Cánh diều) hay, chi tiết | Lý thuyết Toán 11

A. Lý thuyết Hai đường thẳng vuông góc

1. Góc giữa hai đường thẳng trong không gian

Góc giữa hai đường thẳng a và b trong không gian là góc giữa hai đường thẳng a’ và b’ cùng đi qua một điểm O và lần lượt song song (hoặc trùng) với a và b, kí hiệu (a, b) hoặc (a,b)^.

Lý thuyết Hai đường thẳng vuông góc (Cánh diều 2024) hay, chi tiết | Toán lớp 11 (ảnh 1)

 

Nhận xét:

- Góc giữa hai đường thẳng a, b không phụ thuộc vào vị trí điểm O. Thông thường, khi tìm góc giữa hai đường thẳng a, b, ta chọn O thuộc a hoặc O thuộc b.

- Góc giữa hai đường thẳng a, b bằng góc giữa hai đường thẳng b, a, tức là (a, b) = (b, a).

- Góc giữa hai đường thẳng không vượt quá 900.

- Nếu a // b thì (a, c) = (b, c) với mọi đường thẳng c trong không gian.

2. Hai đường thẳng vuông góc trong không gian

Hai đường thẳng được gọi là vuông góc với nhau nếu góc giữa chúng bằng 900.

Khi hai đường thẳng a và b vuông góc với nhau, ta kí hiệu ab.

Nhận xét: Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó vuông góc với đường thẳng còn lại.

Sơ đồ tư duy Hai đường thẳng vuông góc

Lý thuyết Hai đường thẳng vuông góc (Cánh diều 2024) hay, chi tiết | Toán lớp 11 (ảnh 2)

B. Bài tập Hai đường thẳng vuông góc

Đang cập nhật ...

Xem thêm các bài tóm tắt lý thuyết Toán 11 sách Cánh diều hay, chi tiết khác:

Lý thuyết Bài 3: Đạo hàm cấp hai

Lý thuyết Bài 2: Đường thẳng vuông góc với mặt phẳng

Lý thuyết Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện

Lý thuyết Bài 4: Hai mặt phẳng vuông góc

Lý thuyết Bài 5: Khoảng cách

Đánh giá

0

0 đánh giá