Với giải Luyện tập 2 trang 60 Toán 8 Tập 2 Kết nối tri thức chi tiết trong Bài 12: Hình bình hành giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:
Luyện tập 2 trang 60 Toán 8 Tập 2 | Kết nối tri thức Giải Toán lớp 8
Luyện tập 2 trang 60 Toán 8 Tập 1: Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB tại E và tia phân giác của góc B cắt CD tại F (H.3.32).
a) Chứng minh hai tam giác ADE và CBF là những tam giác cân, bằng nhau.
b) Tứ giác DEBF là hình gì? Tại sao?
Lời giải:
Do AB > BC nên E nằm giữa A và B; F nằm giữa D và C.
a) Vì ABCD là hình bình hành nên AB // CD hay BE // DF.
Vì DE là tia phân giác của nên .
Mà (BE // DF, hai góc so le trong) nên .
Suy ra tam giác ADE cân tại A.
Tương tự ta cũng chứng minh được: tam giác BCF cân tại C.
Vì ABCD là hình bình hành nên AD = BC; .
Vì AE là tia phân giác ; BF là tia phân giác nên
mà .
Do đó .
Xét ∆ADE và ∆CBF có:
(chứng minh trên);
AD = BC (chứng minh trên);
(chứng minh trên).
Do đó ∆ADE = ∆CBF (g.c.g).
b) Vì mà (vì tam giác BCF cân tại C)
Suy ra (hai góc đồng vị).
Do đó DE // BF.
Tứ giác BEDF có:
BE // DF (chứng minh trên);
DE // BF (chứng minh trên).
Do đó, tứ giác BEDF là hình bình hành.
Xem thêm các bài giải Toán 8 Kết nối tri thức hay, chi tiết khác:
Mở đầu trang 57 Toán 8 Tập 1: Hai con đường lớn a và b cắt nhau tạo thành một góc. Bên trong góc đó có một điểm dân cư O. Phải mở một con đường thẳng đi qua O cắt a tại A, cắt b tại B như thế nào
HĐ1 trang 57 Toán 8 Tập 1: Trong Hình 3.28, có một hình bình hành. Đó là hình nào? Em có thể giải thích tại sao không?
Thực hành 1 trang 58 Toán 8 Tập 1: Vẽ hình bình hành, biết hai cạnh liên tiếp bằng 3 cm, 4 cm và góc xen giữa hai cạnh đó bằng 60°. Hãy mô tả cách vẽ và giải thích tại sao hình vẽ được là hình bình hành.
HĐ2 trang 58 Toán 8 Tập 1: Hãy nêu các tính chất của hình bình hành mà em đã biết.
HĐ3 trang 58 Toán 8 Tập 1: Cho hình bình hành ABCD (H.3.30).
Luyện tập 1 trang 58 Toán 8 Tập 1: Cho tam giác ABC. Từ một điểm M tùy ý trên cạnh BC, kẻ đường thẳng song song với AB, cắt cạnh AC tại N và kẻ đường thẳng song song với AC, cắt AB tại P. Gọi I là trung điểm của đoạn NP.
Tranh luận trang 59 Toán 8 Tập 1: Tròn khẳng định: Hình thang cân có hai cạnh bên bằng nhau. Ngược lại, hình thang có hai cạnh bên bằng nhau thì nó là hình thang cân.
Câu hỏi trang 59 Toán 8 Tập 1: Hãy viết giả thiết, kết luận của Định lí 2.
Luyện tập 2 trang 60 Toán 8 Tập 1: Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB tại E và tia phân giác của góc B cắt CD tại F (H.3.32).
Thực hành 2 trang 60 Toán 8 Tập 1: Chia một sợi dây xích thành bốn đoạn: hai đoạn dài bằng nhau, hai đoạn ngắn bằng nhau và đoạn dài, đoạn ngắn xen kẽ nhau.
Câu hỏi trang 60 Toán 8 Tập 1: Hãy biết giả thiết, kết luận của Định lí 3.
Luyện tập 3 trang 61 Toán 8 Tập 1: Cho hai điểm A, B phân biệt và điểm O không nằm trên đường thẳng AB. Gọi A’, B’ là các điểm sao cho O là trung điểm của AA’, BB’.
Vận dụng trang 61 Toán 8 Tập 1: Trở lại bài toán mở đầu. Em hãy vẽ hình và nêu cách vẽ con đường cần mở.
Bài 3.13 trang 61 Toán 8 Tập 1: Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai? Vì sao?
Bài 3.14 trang 61 Toán 8 Tập 1: Tính các góc còn lại của hình bình hành ABCD trong Hình 3.35.
Bài 3.15 trang 61 Toán 8 Tập 1: Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của AB, CD. Chứng minh BF = DE.
Bài 3.16 trang 61 Toán 8 Tập 1: Trong mỗi trường hợp sau đây, tứ giác nào là hình bình hành, tứ giác nào không là hình bình hành? Vì sao?
Bài 3.17 trang 61 Toán 8 Tập 1: Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của các cạnh AB, CD. Chứng minh rằng:
Bài 3.18 trang 61 Toán 8 Tập 1: Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD. Một đường thẳng đi qua O lần lượt cắt các cạnh AB, CD của hình bình hành tại hai điểm M, N.
Xem thêm các bài giải Toán 8 Kết nối tri thức hay, chi tiết khác: