Bài 3.43 trang 74 Toán 8 Tập 2 | Kết nối tri thức Giải Toán lớp 8

211

Với giải Bài 3.43 trang 74 Toán 8 Tập 2 Kết nối tri thức chi tiết trong Bài tập cuối chương 3 giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Bài 3.43 trang 74 Toán 8 Tập 2 | Kết nối tri thức Giải Toán lớp 8

Bài 3.43 trang 74 Toán 8 Tập 1: Cho hình bình hành ABCD. Lấy điểm P trên tia AB sao cho AP = 2AB.

a) Tứ giác BPCD có phải là hình bình hành không? Tại sao?

b) Khi tam giác ABD vuông cân tại A, hãy tính số đo các góc của tứ giác BPCD.

Lời giải:

Bài 3.43 trang 74 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Ta có AP = 2AB suy ra AB = BP = AP2 .

Vì ABCD là hình bình hành nên:

• AB // CD hay BP // CD

• AB = CD mà AB = BP nên BP = CD.

Tứ giác BPCD có BP // CD; BP = CD

Do đó tứ giác BPCD là hình bình hành.

b) Khi tam giác ABD vuông cân tại A thì A^=90°;ABD^=ADB^=45° .

Ta có ABD^+DBP^=180° (hai góc kề bù).

Suy ra DBP^=180°ABD^=180°45°=135° .

Do đó DCP^=DBP^=135° .

Vì tứ giác BPCD là hình bình hành nên BD // CP.

Suy ra ABD^=P^ (hai góc đồng vị).

Khi đó P^=45° mà P^=BDC^ (vì tứ giác BPCD là hình bình hành).

Do đó P^=BDC^=45° .

Vậy khi tam giác ABD vuông cân tại A thì số đo các góc của tứ giác BPCD là:

DCP^=DBP^=135°P^=BDC^=45° .

Đánh giá

0

0 đánh giá