Toptailieu biên soạn và giới thiệu lời Giải Toán 8 Bài 16: Đường trung bình của tam giác hay, chi tiết sẽ giúp học sinh dễ dàng trả lời câu hỏi sgk Toán 8 Bài 16 từ đó học tốt môn Toán 8.
Toán 8 (Kết nối tri thức) Bài 16: Đường trung bình của tam giác
Lời giải:
Sau bài học này ta giải quyết được bài toán như sau:
Trong tam giác ABC có D, E lần lượt là trung điểm của AB và AC nên D ∈ AB; E ∈ AC và AD = BD; AE = EC.
Suy ra DE là đường trung bình của tam giác ABC.
Do đó suy ra BC = 2DE = 2 . 500 = 1 000 (m)
Vậy khoảng cách giữa hai điểm B và C bằng 1 000 m.
1. Định nghĩa đường trung bình của tam giác
Câu hỏi trang 81 Toán 8 Tập 1: Em hãy chỉ ra các đường trung bình của ∆DEF và ∆IHK trong Hình 4.14.
Lời giải:
Quan sát Hình 4.14, ta thấy:
* Xét ∆DEF có M là trung điểm của cạnh DE; N là trung điểm của cạnh DF nên MN là đường trung bình của ∆DEF.
* Xét ∆IHK có:
• B là trung điểm của cạnh IH; C là trung điểm của cạnh IK nên BC là đường trung bình của ∆DEF.
• B là trung điểm của cạnh IH; A là trung điểm của cạnh HK nên AB là đường trung bình của ∆DEF.
• A là trung điểm của cạnh HK; C là trung điểm của cạnh IK nên AC là đường trung bình của ∆DEF.
Vậy đường trung bình của ∆DEF là MN; các đường trung bình của ∆IHK là AB, BC, AC.
2. Tính chất đường trung bình của tam giác
HĐ1 trang 82 Toán 8 Tập 1: Cho DE là đường trung bình của tam giác ABC (H.4.15).
Sử dụng định lí Thalès đảo, chứng minh rằng DE // BC.
Lời giải:
Ta có AD = BD và D ∈ AB nên D là trung điểm của AB;
AE = EC và E ∈ AC nên E là trung điểm của AC.
Xét tam giác ABC có D, E lần lượt là trung điểm của AB và AC, theo định lí Thalès đảo, ta suy ra DE // BC (đpcm).
HĐ2 trang 82 Toán 8 Tập 1: Cho DE là đường trung bình của tam giác ABC (H.4.15).
Lời giải:
Gọi F là trung điểm của BC. Chứng minh tứ giác DEFB là hình bình hành. Từ đó suy ra .
Lời giải:
Vì DE là đường trung bình của tam giác ABC nên D, E lần lượt là trung điểm của AB, AC.
Suy ra .
Do đó DE // BC (theo định lí Thalès đảo).
Vì E, F lần lượt là trung điểm của AC, BC.
Suy ra .
Do đó EF // AB (theo định lí Thalès đảo).
Xét tứ giác DEFB có DE // BF (vì DE // BC); EF // BD (vì EF // AB)
Do đó tứ giác DEFB là hình bình hành.
Suy ra DE = BF mà nên .
Lời giải:
Tam giác ABC cân tại A nên .
Vì D và E lần lượt là trung điểm của AB, AC nên DE là đường trung bình của tam giác ABC.
Suy ra DE // BC nên tứ giác DECB là hình thang.
Hình thang DECB có nên tứ giác DECB là hình thang cân.
Vận dụng trang 83 Toán 8 Tập 1: Em hãy trả lời câu hỏi trong tình huống mở đầu.
Lời giải:
Trong tam giác ABC có D, E lần lượt là trung điểm của AB và AC nên D ∈ AB; E ∈ AC và AD = BD; AE = EC.
Suy ra DE là đường trung bình của tam giác ABC.
Do đó suy ra BC = 2DE = 2 . 500 = 1 000 (m)
Bài tập
Bài 4.6 trang 83 Toán 8 Tập 1: Tính các độ dài x, y trong Hình 4.18.
Lời giải:
• Hình 4.18a)
Ta có: DH = HF, H ∈ DF nên H là trung điểm của DF;
EK = KF, K ∈ EF nên K là trung điểm của EF.
Xét tam giác DEF có H, K lần lượt là trung điểm của DF, EF nên HK là đường trung bình của tam giác DEF.
Suy ra .
Do đó x = 2HK = 2 . 3 = 6.
• Hình 4.18b)
Vì MN ⊥ AB, AC ⊥ AB nên MN // AC.
Mà M là trung điểm của BC (vì AM = BM = 3)
Suy ra MN là đường trung bình của tam giác ABC.
Do đó y = NC = BN = 5.
Vậy x = 6; y = 5.
a) Chứng minh tứ giác BMNC là hình thang.
b) Tứ giác MNPB là hình gì? Tại sao?
Lời giải:
a) Vì M, N lần lượt là trung điểm của các cạnh AB, AC nên MN là đường trung bình của tam giác ABC suy ra MN // BC hay MN // BP.
Tứ giác BMNC có MN // BP nên tứ giác BMNC là hình thang (đpcm).
b) Vì N, P lần lượt là trung điểm của các cạnh AC, BC nên NP là đường trung bình của tam giác ABC suy ra NP // AB hay NP // MB.
Tứ giác MNPB có MN // BP; BM // NP (chứng minh trên).
Do đó, tứ giác MNPB là hình bình hành.
b) DC cắt AM tại I. Chứng minh I là trung điểm của AM.
Lời giải:
a) Vì AM là đường trung tuyến của tam giác ABC nên M là trung điểm của BC.
Ta có BE = DE và E ∈ BD nên E là trung điểm của BD.
Xét tam giác BCD có E, M lần lượt là trung điểm của BD, BC nên EM là đường trung bình của tam giác BCD.
Do đó DC // EM (tính chất đường trung bình).
b) Ta có D là trung điểm của AE (vì AD = DE, D ∈ AE).
Mà DI // EM (vì DC // EM).
Do đó DI là đường trung bình của tam giác AEM.
Suy ra I là trung điểm của AM.
Lời giải:
Vì ABCD là hình chữ nhật nên và hai đường chéo AC, BD bằng nhau và cắt nhau tại trung điểm O của mỗi đường.
Suy ra AB ⊥ AD; O là trung điểm của AC và BD.
Vì O, H lần lượt là trung điểm của BD và AB nên OH là đường trung bình của tam giác ABD.
Suy ra OH // AD mà AB ⊥ AD nên OH ⊥ AB hay .
Tương tự, ta chứng minh được: OK ⊥ AD hay .
Ta có:
Suy ra .
Tứ giác AHOK có .
Do đó, tứ giác AHOK là hình chữ nhật.
Xem thêm các bài giải Toán 8 Kết nối tri thức hay, chi tiết khác:
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.