Giải Toán 8 trang 81 Tập 1 (Kết nối tri thức)

229

Với giải SGK Toán 8 Kết nối tri thức trang 81 chi tiết trong Bài 16: Đường trung bình của tam giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải Toán 8 trang 81 Tập 1 (Kết nối tri thức)

Mở đầu trang 81 Toán 8 Tập 1: Cho B và C là hai điểm cách nhau bởi một hồ nước như Hình 4.12 với D, E lần lượt là trung điểm của AB và AC. Biết DE = 500 m, liệu không cần đo trực tiếp, ta có thể tính được khoảng cách giữa hai điểm B và C không?

Toán 8 Bài 16 (Kết nối tri thức): Đường trung bình của tam giác (ảnh 1)

Lời giải:

Sau bài học này ta giải quyết được bài toán như sau:

Trong tam giác ABC có D, E lần lượt là trung điểm của AB và AC nên D  AB; E  AC và AD = BD; AE = EC.

Suy ra DE là đường trung bình của tam giác ABC.

Do đó DE=12BC suy ra BC = 2DE = 2 . 500 = 1 000 (m)

Vậy khoảng cách giữa hai điểm B và C bằng 1 000 m.

1. Định nghĩa đường trung bình của tam giác

Câu hỏi trang 81 Toán 8 Tập 1: Em hãy chỉ ra các đường trung bình của ∆DEF và ∆IHK trong Hình 4.14.

Toán 8 Bài 16 (Kết nối tri thức): Đường trung bình của tam giác (ảnh 2)

Lời giải:

Quan sát Hình 4.14, ta thấy:

* Xét ∆DEF có M là trung điểm của cạnh DE; N là trung điểm của cạnh DF nên MN là đường trung bình của ∆DEF.

* Xét ∆IHK có:

• B là trung điểm của cạnh IH; C là trung điểm của cạnh IK nên BC là đường trung bình của ∆DEF.

• B là trung điểm của cạnh IH; A là trung điểm của cạnh HK nên AB là đường trung bình của ∆DEF.

• A là trung điểm của cạnh HK; C là trung điểm của cạnh IK nên AC là đường trung bình của ∆DEF.

Vậy đường trung bình của ∆DEF là MN; các đường trung bình của ∆IHK là AB, BC, AC.

Đánh giá

0

0 đánh giá