Lý thuyết Khái niệm hàm số (Chân trời sáng tạo) hay, chi tiết | Lý thuyết Toán 8

227

Toptailieu.vn xin giới thiệu Lý thuyết Khái niệm hàm số (Chân trời sáng tạo) hay, chi tiết | Lý thuyết Toán 8. Bài viết gồm phần lý thuyết trọng tâm nhất được trình bày một cách dễ hiểu, dễ nhớ bên cạnh đó là bộ câu hỏi trắc nghiệm có hướng dẫn giải chi tiết để học sinh có thể vận dụng ngay lý thuyết, nắm bài một cách hiệu quả nhất. Mời các bạn đón xem:

Lý thuyết Khái niệm hàm số (Chân trời sáng tạo) hay, chi tiết | Lý thuyết Toán 8

A. Lý thuyết Khái niệm hàm số

1. Hàm số

Khái niệm:

Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x và x gọi là biến số.

Ví dụ: Ta có bảng nhiệt độ dự báo ở Thủ đô Hà Nội ngày 25/5/2023.

t(h)

10

11

12

13

T(0C)

32

33

34

 

34

Ta có nhiệt độ T là hàm số của thời điểm t vì mỗi giá trị của t chỉ xác định đúng một giá trị của T.

Ngược lại, thời điểm t không phải là hàm số của nhiệt độ T, vì nhiệt độ T = 340C tương ứng với hai thời điểm khác nhau t = 12 và t = 13.

2. Giá trị của hàm số

Cách cho một hàm số

Hàm số có thể được cho bằng bảng, biểu đồ hoặc bằng công thức,...

Nếu y là hàm số của x, ta viết

Ví dụ: Cho hàm số y = x + 3, ta có thể viết y = f(x) = x + 3.

Giá trị của hàm số

Cho hàm số y = f(x), nếu ứng với x = a ta có y = f(a) thì f(a) được gọi là giá trị của hàm số y = f(x) tại x = a

Bảng giá trị của hàm số y = f(x)

x

a

b

c

...

...

y = f(x)

f(a)

f(b)

f(c)

...

...

Ví dụ: Cho hàm số y = f(x) = -2x + 1.

a. Tính f(10); f(-10)

b. Lập bảng giá trị của hàm số với x lần lượt bằng -2; -1; 0; 1; 2

Giải

a. f(10) = -2.10 + 1 = -20 + 1 = -19

f(-10) = -2.(-10) + 1 = 20 + 1 = 21

b. Bảng giá trị của hàm số với x lần lượt bằng -2; -1; 0; 1; 2 là:

x

-2

-1

0

1

2

y = f(x) = -2x + 1

5

3

1

-1

-3

Sơ đồ tư duy Khái niệm hàm số

Khái niệm hàm số (ảnh 1)

B. Bài tập Khái niệm hàm số

Đang cập nhật...

Xem thêm các bộ Lý thuyết Toán 8 (Chân trời sáng tạo) hay, chi tiết khác:

Lý thuyết Bài 2: Tọa độ của một điểm và đồ thị của hàm số

Lý thuyết Bài 3: Hàm số bậc nhất y = ax + b (a ≠ 0)

Lý thuyết Bài 4: Hệ số góc của đường thẳng

Lý thuyết Bài 1: Phương trình bậc nhất một ẩn

Lý thuyết Bài 2: Giải bài toán bằng cách lập phương trình bậc nhất

Đánh giá

0

0 đánh giá