Toptailieu.vn biên soạn và giới thiệu lời Giải Toán 8 Chân trời sáng tạo Bài 1: Khái niệm hàm số hay, chi tiết sẽ giúp học sinh dễ dàng trả lời câu hỏi SGK Toán 8 Bài 1 từ đó học tốt môn Toán 8.
Toán 8 (Chân trời sáng tạo) Bài 1: Khái niệm hàm số
Quan sát biểu đồ và cho biết số lượng mưa ở mỗi tháng là bao nhiêu.
Lời giải:
Lượng mưa tháng 5 là 134,5 mm;
Lượng mưa tháng 6 là 343,6 mm;
Lượng mưa tháng 7 là 319,9 mm;
Lượng mưa tháng 8 là 276,6 mm;
Lượng mưa tháng 9 là 377,8 mm;
Lượng mưa tháng 10 là 288,7 mm;
Lượng mưa tháng 11 là 155,4 mm.
1. Khái niệm hàm số
Ứng với mỗi giờ em đọc được bao nhiêu số chỉ nhiệt độ?
Tính và lập bảng các giá trị tương ứng của t khi v lần lượt bằng 10; 20; 30; 60; 180.
Ứng với mỗi giá trị của đại lượng v em tính được bao nhiêu giá trị của đại lượng t?
Lời giải:
a) Ứng với mỗi giờ chỉ đọc được một số chỉ nhiệt độ.
Ứng với 7h thì nhiệt độ là (36°C)
Ứng với 8h thì nhiệt độ là (37°C)
Ứng với 9h thì nhiệt độ là (36°C)
Ứng với 10h thì nhiệt độ là (37°C)
Ứng với 11h thì nhiệt độ là (38°C)
Ứng với 12h thì nhiệt độ là (37°C)
Ứng với 13h thì nhiệt độ là (38°C)
Ứng với 14h thì nhiệt độ là (39°C)
Ứng với 15h thì nhiệt độ là (39°C)
b) Với v = 10
Với v = 20
Với v = 30
Với v = 60
Với v = 180
Ta có bảng:
v |
10 |
20 |
30 |
60 |
180 |
t |
18 |
9 |
6 |
3 |
1 |
Thực hành 1 trang 7 Toán 8 Tập 2: Mô tả các đại lượng là hàm số và biến số trong các mô hình sau:
a) Biểu đồ cột chỉ doanh thu y (triệu đồng) của một của hàng trong tháng x.
c) Số tiền y (đồng) người mua phải trả cho x quyển vở có giá 10 000 đồng/quyển.
Lời giải:
a) Đại lượng là hàm số là doanh thu y (triệu đồng) của một cửa hàng và biến số là tháng x.
b) Đại lượng là hàm số là quãng đường s (km) đi được và biến số là thời gian t (giờ).
c) Đại lượng là hàm số là số tiền y (đồng) người mua phải trả và biến số là số x quyển vở.
Lời giải:
F là một hàm số theo biến C vì với mỗi giá trị của C chỉ cho ta duy nhất một giá trị của F.
2. Giá trị của hàm số
b) Cho x một giá trị tùy ý, tính giá trị tương ứng của y.
Lời giải:
a) Với x = 4 ta có: y = 2.4 + 3 = 11
b) Với x = 10 ta có: y = 10.4 + 3 = 43.
Ta có bảng sau:
x |
1 |
2 |
3 |
4 |
10 |
y = 2x + 3 |
5 |
7 |
9 |
11 |
43 |
Đại lượng y có phải là hàm số của đại lượng x không?
- Lập bảng giá trị của hàm số với x lần lượt bằng −3; −2; −1; 0; 1; 2; 3.
Lời giải:
a) Với mỗi giá trị của x ta luôn xác định được chỉ một giá trị tương ứng của y nên đại lượng y là hàm số của đại lượng x.
b) f(2) = 22 = 4; f(−3) = (−3)2 = 9.
Ta có f(0) = 02 = 0; f(−1) = (−1)2 = 1;
f(2) = 22 = 4; f(3) = 32 = 9.
Từ đó ta có bảng:
x |
−3 |
−2 |
−1 |
0 |
1 |
2 |
3 |
y = x2 |
9 |
4 |
1 |
0 |
1 |
4 |
9 |
Lời giải:
Ta có: C = d trong đó, C là chu vi đường tròn; d là đường kính và là số pi.
Do đó, f(d) = .d
Với d = 1 ⇒ f(1) = .1 =
d = 2 ⇒ f(2) = .2 = 2
d = 3 ⇒ f(3) = .3 = 3
d = 4 ⇒ f(4) = .4 = 4
Ta thu được bảng sau:
d |
1 |
2 |
3 |
4 |
f(d) |
|
2 |
3 |
4 |
Bài tập
Lời giải:
a) Dựa vào bảng, ta thấy với một giá trị của x ta chỉ nhận được một giá trị của y tương ứng, do đó đại lượng y là hàm số của đại lượng x.
b) Dựa vào bảng, ta thấy tồn tại một giá trị của x ta có thể nhận được hai giá trị của y tương ứng, do đó đại lượng y không là hàm số của đại lượng x.
Ví dụ: Khi x = 2 thì y = hoặc y = .
Bài 2 trang 9 Toán 8 Tập 2: Cho hàm số y = f(x) = 3x.
b) Lập bảng các giá trị tương ứng của y khi x lần lượt nhận các giá trị: −3; −2; −1; 0; 1; 2; 3.
Lời giải:
a) Ta có:
• f(1) = 3.1 = 3;
• f(−2) = 3.(−2) = −6;
• .
b) Ta có f(−3) = 3.(−3) = −9; f(−1) = 3.(−1) = −3;
f(0) = 3.0 = 0; f(2) = 3.2 = 6; f(3) = 3.3 = 9.
Từ đó ta có bảng sau:
x |
−3 |
−2 |
−1 |
0 |
1 |
2 |
3 |
y = 3x |
−9 |
−6 |
−3 |
0 |
3 |
6 |
9 |
Bài 3 trang 9 Toán 8 Tập 2: Cho hàm số y = f(x) = x2 + 4. Tính f(−3); f(−2); f(−1); f(0); f(1).
Lời giải:
• f(−3) = (−3)2 + 4 = 9 + 4 = 13;
• f(−2) = (−2)2 + 4 = 4 + 4 = 8;
• f(−1) = (−1)2 + 4 = 5;
• f(0) = 0 + 4 = 4;
• f(1) = 1 + 4 = 5.
Vậy f(−3) = 13; f(−2) = 8; f(−1) = 5; f(0) = 4; f(1) = 5.
Lời giải:
Đại lượng m là hàm số của đại lượng V vì với mỗi một giá trị của V ta luôn chỉ xác định được một giá trị của m.
Ta có: m = 7,8V
m(10) = 7,8.10 = 78;
m(20) = 7,8.20 = 156;
m(40) = 7,8.40 = 312;
m(50) = 7,8.50 = 390.
Lời giải:
• Với v = 10 ta có ;
• Với v = 20 ta có ;
• Với v = 40 ta có ;
• Với v = 80 ta có .
Khi đó, ta có bảng sau:
v (km/h) |
10 |
20 |
40 |
80 |
t (giờ) |
2 |
1 |
0,5 |
0,25 |
Xem thêm Lời giải bài tập Toán 8 Chân trời sáng tạo hay, chi tiết khác:
Bài 2: Tọa độ của một điểm và đồ thị của hàm số
Bài 3: Hàm số bậc nhất y = ax + b (a ≠ 0)
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.