Cho tam giác ABC cân tại đỉnh A có đường cao AH. Cho M là một điểm tùy ý

451

Với Giải SBT Toán 7 Bài 4.50 trang 70 Tập 1 trong Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng Sách bài tập Toán lớp 7 Tập 1 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7.

Cho tam giác ABC cân tại đỉnh A có đường cao AH. Cho M là một điểm tùy ý

Bài 4.50 trang 70 sách bài tập Toán 7: Cho tam giác ABC cân tại đỉnh A có đường cao AH. Cho M là một điểm tùy ý trên đường thẳng AH sao cho M không trùng với A (H.4.54).

Chứng minh rằng: MBA^=MCA^.

 (ảnh 1)Lời giải:

Xét tam giác vuông ABH và tam giác vuông ACH có:

AB = AC (∆ABC cân tại đỉnh A)

AH: cạnh chung

Do đó, ∆ABH = ∆ACH (cạnh huyền – cạnh góc vuông).

Suy ra BAH^=CAH^, hay BAM^=CAM^.

Xét tam giác ABM và ACM có:

AB = AC (∆ABC cân tại đỉnh A)

BAM^=CAM^

AM: cạnh chung

Do đó, ∆ABM = ∆ACM (c – g – c).

Suy ra MBA^=MCA^.

Xem thêm lời giải sách bài tập Toán 7 lớp 7 Kết nối tri thức với cuộc sống hay, chi tiết khác:

Bài 4.41 trang 68 sách bài tập Toán 7: Trong những tam giác dưới đây (H.4.46), tam giác nào là tam giác cân, cân tại đỉnh nào? Vì sao?...

Bài 4.42 trang 68 sách bài tập Toán 7: Tính số đo các góc còn lại trong các tam giác cân dưới đây (H.4.47)...

Bài 4.43 trang 69 sách bài tập Toán 7: Tam giác ABC có hai đường cao BE và CF bằng nhau (H.4.48)...

Bài 4.44 trang 69 sách bài tập Toán 7: Cho tam giác ABC vuông tại đỉnh A. Gọi M là trung điểm của BC và D là điểm nằm trên tia đối của tia MA...

Bài 4.45 trang 69 sách bài tập Toán 7: Cho tam giác ABC là tam giác cân đỉnh A. Chứng minh rằng...

Bài 4.46 trang 69 sách bài tập Toán 7: Cho các điểm A, B, C, D, E như Hình 4.51. Chứng minh rằng...

Bài 4.47 trang 70 sách bài tập Toán 7: Cho tam giác ABH vuông tại đỉnh H có góc ABH = 60 độ. Trên tia đối của tia HB lấy điểm C sao cho HB = HC (H.4.52)...

Bài 4.48 trang 70 sách bài tập Toán 7: Đường thẳng d trong hình nào dưới đây là trung trực của đoạn thẳng AB?...

Bài 4.49 trang 70 sách bài tập Toán 7: Cho A là một điểm tùy ý nằm trên đường trung trực của đoạn thẳng BC sao cho A không thuộc BC...

Đánh giá

0

0 đánh giá