Tính giá trị của biểu thức: a) A = sin45° + 2sin60° + tan120° + cos135°

600

Với Giải SBT Toán 10 trang 32 Tập 1 trong Bài 5: Giá trị lượng giác của một góc từ 0 độ đến 180 độ bài tập Toán lớp 10 Tập 1 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 32.

Tính giá trị của biểu thức: a) A = sin45° + 2sin60° + tan120° + cos135°

Bài 3.1 trang 32 sách bài tập Toán 10: Tính giá trị của biểu thức:

a) A = sin45° + 2sin60° + tan120° + cos135°;

b) B = tan45° . cot135° - sin30° . cos120° - sin60° . cos150°;

c) C = cos25° + cos225° + cos245° + cos265° + cos285°;

d) D = 121+tan273°- 4tan75° . cot105° + 12sin2107° - 2tan40° . cos60° . tan50°;

Lời giải:

a) A = sin45° + 2sin60° + tan120° + cos135°

Ta có sin 45° = 12; sin 60° = 32;

tan 120° = 3; cos 135° = 12.

Khi đó A = 12+2.32+3+12

= 12+3312

= 0.

Vậy A = 0.

b) B = tan45° . cot135° - sin30° . cos120° - sin60° . cos150°

Ta có tan45° = 1; cot135° = -1;

sin30° = 12; cos120° = 12;

sin60° = 32; cos150° = 32.

Khi đó B = 1 . (-1) - 12.12- 32.32

= -1 + 14 + 34 = 0.

Vậy B = 0.

c) C = cos25° + cos225° + cos245° + cos265° + cos285°

Ta có cos45° = 12;

cos5° = cos(90° - 85°) = sin85°;

cos25° = cos(90° - 65°) = sin65°.

Do đó: cos25° = sin285°; cos225° = sin265°.

Khi đó C = sin285° + sin265° + 12 + cos265° + cos285°

C = (sin285° + cos285°) + (sin265° + cos265°) + 12

= 1 + 1 + 12 = 52.

Vậy C = 52.

d) D = 121+tan273°- 4tan75° . cot105° + 12sin2107° - 2tan40° . cos60° . tan50°

Ta có 1 + tan273° = 1 + sin273°cos273°

= cos273°cos273°+sin273°cos273°

= cos273°+sin273°cos273° = 1cos273°

11+tan273° = cos273°

121+tan273° = 12cos273°

Khi đó:

D = 12cos273° - 4 . tan(180° - 105°) . cot105° + 12sin2107° - 2tan(90° - 50°) . cos60° . tan50°

= 12cos273° – 4(–tan105°) . cot105° + 12sin2 107° - 2cot50° . cos60° . tan50°

= 12cos2 73° + 12sin2 73° + 4tan105° . cot105° - 2cot 50° . tan 50° . cos 60°

= 12(cos2 73° + sin2 73°) + 4.1 – 2.1.cos60°

= 12 + 4 - 2. 12 = 15.

Vậy D = 15.

e) E = 4tan32° . cos60° . cot148° + 5cot2108°1+tan218° + 5sin272°

Ta có 1 + tan2 18° = 1 + sin218°cos218°

= cos218°cos218°+sin218°cos218°

= cos218°+sin218°cos218°

= 1cos218°

5cot2108°1+tan2108° = 5cot2108° . cos218°

= 5[cot(180° - 72°)]2 . cos218°

= 5.(-cot72°)2 . cos218°

= 5.cot272° . cos218°

Khi đó:

E = 4tan32° . cos60° . cot(180° - 32°) + 5cot2 72° . cos218° + 5[sin(90° - 18°)]2

= 4tan32° . cos60° . (-cot32°) + 5 cot272° . cos218° + 5cos218°

= -4cos60° + 5cos218° . (cot272° + 1)

= -4 . 12 + 5cos218° . 1sin272°

= -2 + 5cos218° . 1sin90°18°2

= -2 + 5cos2 18° . 1cos218°

= -2 + 5 = 3.

Vậy E = 3.

Xem thêm lời giải vở bài tập Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:

Bài 3.2 trang 32 sách bài tập Toán lớp 10 Tập 1Cho góc α, 90° < α < 180° thỏa mãn sin α = 3/4. Tính giá trị của biểu thức:...

Bài 3.3 trang 33 sách bài tập Toán lớp 10 Tập 1: Cho góc α thỏa mãn 0° < α < 180°, tanα = 2. Tính giá trị của các biểu thức sau:...

Bài 3.4 trang 33 sách bài tập Toán lớp 10 Tập 1: Cho góc α thỏa mãn 0° < α < 180°, tanα = căn 2. Tính giá trị của biểu thức...

Bài 3.5 trang 33 sách bài tập Toán lớp 10 Tập 1: Chứng minh rằng:...

Bài 3.6 trang 33 sách bài tập Toán lớp 10 Tập 1: Góc nghiêng của Mặt Trời tại một vị trí trên Trái Đất là góc nghiêng giữa tia nắng lúc giữa trưa với mặt đất. Trong thực tế, để đo trực tiếp góc này, vào giữa trưa (khoảng 12 giờ), em có thể dựng một thước thẳng vuông góc với mặt đất, đo độ dài của bóng thước trên mặt đất. Khi đó, tang của góc nghiêng Mặt Trời tại vị trí đặt thước bằng tỉ số giữa độ dài của thước và độ dài của bóng thước. Góc nghiêng của Mặt Trời phụ thuộc vào vĩ độ của vị trí đo và phụ thuộc vào thời gian đo trong năm (ngày thứ mấy trong năm). Tại vị trí có vĩ độ  và ngày thứ N trong năm, góc nghiêng của Mặt Trời α còn được tính theo công thức sau:...

Đánh giá

0

0 đánh giá