Toán 10 Kết nối tri thức Bài 5: Giá trị lượng giác của một góc từ 0° đến 180°

1 K

Toptailieu.vn giới thiệu Giải SGK Toán 10 Bài 5 (Kết nối tri thức): Giá trị lượng giác của một góc từ 0° đến 180° chi tiết sách Toán 10 Tập 1 Kết nối tri thức với cuộc sống giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 10. Mời các bạn đón xem:

Toán 10 Kết nối tri thức Bài 5: Giá trị lượng giác của một góc từ 0° đến 180°

Câu hỏi mở đầu trang 33 Toán lớp 10: Bạn đã biết tỉ số lượng giác của một góc nhọn. Đối với góc tù thì sao?

Câu hỏi mở đầu trang 33 Toán lớp 10 Tập 1 I Kết nối tri thức với cuộc sống (ảnh 1)

Lời giải:

Góc α cho trước,0o<α<180o.

Trên nửa đường tròn đơn vị, vẽ điểm M(xo;yo) sao cho xOM^=α.

Câu hỏi mở đầu trang 33 Toán lớp 10 Tập 1 I Kết nối tri thức với cuộc sống (ảnh 2)

Khi đó:

sinα=yo;cosα=xo;tanα=xoyo(yo0);cotα=yoxo(xo0).

1. GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC

Hoạt động 1 trang 34 Toán lớp 10: a) Nêu nhận xét về vị trí điểm M trên nửa đường tròn đơn vị trong mỗi trường hợp sau:

α=90o;α<90o;α>90o.

b) Khi 0o<α<90o, nêu mối quan hệ giữa cosα,sinα với hoành độ và tung độ của điểm M.

Hoạt động 1 trang 34 Toán lớp 10 Tập 1 I Kết nối tri thức với cuộc sống (ảnh 2)

Phương pháp giải:

a) Quan sát gócα=xOM^ trong các trường hợp tương ứng. Khi ấy M thuộc cung nào?

b) Khi 0o<α<90o thì cosα=|x0|OM,sinα=|y0|OM; trong đó OM=R=1.

Lời giải:

a) Khi α=90o, điểm M trùng với điểm C. (Vì xOC^=AOC^=90o)

Khi α<90o, điểm M thuộc vào cung AC (bên phải trục tung)

Khi α>90o, điểm M thuộc vào cung BC (bên trái trục tung)

b) Khi 0o<α<90o , ta có:

Hoạt động 1 trang 34 Toán lớp 10 Tập 1 I Kết nối tri thức với cuộc sống (ảnh 1)

cosα=|x0|OM=|x0|=x0;sinα=|y0|OM=|yo|=yo

Vì OM=R=1x0tia Oxnên x0>0y0tia Oynên y0>0

Vậy cosα là hoành độ x0của điểm M, sinα là tung độ y0 của điểm M.

Luyện tập 1 trang 35 Toán lớp 10: Tìm các giá trị lượng giác của góc 120o (H.3.4)

Luyện tập 1 trang 35 Toán lớp 10 Tập 1 I Kết nối tri thức với cuộc sống (ảnh 2)

Phương pháp giải:

Gọi M là điểm trên nửa đường tròn đơn vị sao cho xOM^=120o

Khi đó hoành độ và tung độ của điểm M lần lượt là các giá trị cos120o,sin120o

Từ đó suy ra tan120o=sin120ocos120o,cot120o=cos120osin120o.

Lời giải:

Gọi M là điểm trên nửa đường tròn đơn vị sao cho xOM^=120o

Gọi N, P tương ứng là hình chiếu vuông góc của M lên các trục Ox, Oy.

Luyện tập 1 trang 35 Toán lớp 10 Tập 1 I Kết nối tri thức với cuộc sống (ảnh 1)

Vì  xOM^=120o>90o nên M nằm bên trái trục tung.

Khi đó:cos120o=ON¯,sin120o=OP¯

Vì xOM^=120o nên NOM^=180o120o=60o và POM^=120o90o=30o

Vậy các tam giác ΔMON và ΔMOP vuông tại N, p và có một góc bằng 30o

ON=MP=12OM=12(Trong tam giác vuông, cạnh đối diện góc 30o bằng một nửa cạnh huyền)

Và OP=MN=OM2ON2=12(12)2=32

Vậy điểm M có tọa độ là (12;32).

Và cos120o=12;sin120o=32

tan120o=sin120ocos120o=32:(12)=3;cot120o=cos120osin120o=(12):32=13=33.

Chú ý: Ta có thể sử dụng máy tính cầm tay để tính các giá trị lượng giác góc 120o

Với các loại máy tính fx-570 ES (VN hoặc VN PLUS) ta làm như sau:

Bấm phím “SHIFT”  “MODE” rồi bấm phím “3” (để chọn đơn vị độ)

Tính sin120o, bấm phím:  sin  1  2  0  o’’’  = ta được kết quả là 32

Tính cos120o,bấm phím:  cos  1  2  0  o’’’  = ta được kết quả là 12

Tính tan120o, bấm phím:  tan  1  2  0  o’’’  = ta được kết quả là 3

( Để tính cot120o, ta tính 1:tan120o)

2. MỐI QUAN HỆ GIỮA CÁC GIÁ TRỊ LƯỢNG GIÁC CỦA HAI GÓC BÙ NHAU

Câu hỏi trang 36 Toán 10

Hoạt động 2 trang 36 Toán lớp 10: Nêu nhận xét về vị trí của hai điểm M, M’ đối với trục Oy. Từ đó nêu các mối quan hệ giữa sinα và sin(180oα), giữa cosα và  cos(180oα).

Phương pháp giải:

Nhận xét vị trí của M và M’ trong mỗi trường hợp: α=90o;α<90o;α>90o.

Khi 0o<α<90ocosα,sinα tương ứng là hoành độ và tung độ của điểm M.

Lời giải:

M, M’ là hai điểm trên nửa đường tròn đơn vị tương ứng với hai góc α và 180oα.

Giả sử M(x0;yo). Khi đó cosα=x0;sinα=yo

Trường hợp 1:  α=90o

Khi đó α=180oα=90o

Tức là M và M’ lần lượt trùng nhau và trùng với B.

Hoạt động 2 trang 35 Toán lớp 10 Tập 1 I Kết nối tri thức với cuộc sống (ảnh 2)

Và  {cosα=cos(180oα)=0;sinα=sin(180oα)=sin90o=1.cotα=0

Không tồn tại tanα với α=90o

Trường hợp 2: α<90o180oα>90o

M nằm bên phải trục tung

M’ nằm bên trái trục tung

Hoạt động 2 trang 35 Toán lớp 10 Tập 1 I Kết nối tri thức với cuộc sống (ảnh 1)

Dễ thấy: MOC^=180oxOM^=180o(180oα)=α=xOM^

MOB^=90oMOC^=90oMOA^=MOB^

Xét tam giác MOB và tam giác MOB  ta có:

OM=OM

MOB^=MOB^

OB chung

ΔMOB=ΔMOB{OM=OMBM=BM

Hay OB là trung trực của đoạn thẳng MM’.

Nói cách khác M và M’ đối xứng với nhau qua trục tung.

Mà M(x0;yo) nên M(x0;yo)

cos(180oα)=x0=cosα;sin(180oα)=yo=sinα.{tan(180oα)=tanαcot(180oα)=cotα

Trường hợp 3: α>90o180oα<90o

Khi đó M nằm bên trái trục tung và M’ nằm bên phải trục tung.

Tương tự ta cũng chứng minh được M và M’ đối xứng với nhau qua trục tung.

Như vậy

cos(180oα)=x0=cosα;sin(180oα)=yo=sinα.{tan(180oα)=tanαcot(180oα)=cotα

Kết luận: Với mọi 0o<α<180o, ta luôn có

cos(180oα)=cosα;sin(180oα)=sinα.tan(180oα)=tanα(α90o)cot(180oα)=cotα

Luyện tập 2 trang 36 Toán lớp 10: Trong Hình 3.6, hai điểm M, N ứng với hai góc phụ nhau α và 90oα (xOM^=α,xON^=90oα). Chứng mình rằng ΔMOP=ΔNOQ. Từ đó nêu mối quan hệ giữa cosα và sin(90oα).

Phương pháp giải:

Nhận xét vị trí của M và N trong mỗi trường hợp: α=90o;α<90o

Khi 0o<α<90ocosα,sinα tương ứng là hoành độ và tung độ của điểm M.

Lời giải:

Trường hợp 1:  α=90o

Khi đó 90oα=0o

Tức là M và N lần lượt trùng nhau với B và A.

Luyện tập 2 trang 36 Toán lớp 10 Tập 1 I Kết nối tri thức với cuộc sống (ảnh 1)

Và  cosα=0=sin(90oα)

Trường hợp 2: 0o<α<90o0o<90oα<900

M và N cùng nằm bên trái phải trục tung.

Luyện tập 2 trang 36 Toán lớp 10 Tập 1 I Kết nối tri thức với cuộc sống (ảnh 2)

Ta có: α=AOM^;90oα=AON^

Dễ thấy: AON^=90oα=90oNOB^α=NOB^

Xét hai tam giác vuông NOQ và tam giác MOP  ta có:

OM=ON

POM^=QON^

ΔNOQ=ΔMOP{OP=OQQN=MP

Mà M(x0;yo) nên N(yo;x0). Nói cách khác:

cos(90oα)=sinα;sin(90oα)=cosα.

Câu hỏi trang 37 Toán 10

Câu hỏi vận dụng trang 37 Toán lớp 10: Một chiếc đu quay có bán kính 75 m, tâm của vòng quay ở độ cao 90 m (H.3.7), thời gian thực hiện mỗi vòng quay của đu quay là 30 phút. Nếu một người vào cabin tại vị trí thấp nhất của vòng quay, thì sau 20 phút quay, người đó ở độ cao bao nhiêu mét?

Câu hỏi vận dụng trang 37 Toán lớp 10 Tập 1 I Kết nối tri thức với cuộc sống (ảnh 2)

Phương pháp giải:

Bước 1: Giả sử chiều quay của chiếc đu quay. Xác định vị trí của cabin sau 20 phút.

Bước 2: Dựa vào giá trị lượng giác của góc, xác định khoảng cách từ cabin đến Ox (trong hình H.3.7)

Bước 3: Suy ra độ cao của người đó sau 20 phút quay.

Lời giải:

Giả sử chiếc đu quay quay theo chiều kim đồng hồ.

Gọi M là vị trí của cabin, M’ là vị trí của cabin sau 20 phút và các điểm A A’, B, H như hình dưới.

Câu hỏi vận dụng trang 37 Toán lớp 10 Tập 1 I Kết nối tri thức với cuộc sống (ảnh 1)

Vì đi cả vòng quay mất 30 phút nên sau 20 phút, cabin sẽ đi quãng đường bằng 23 chu vi đường tròn.

Sau 15 phút cabin đi chuyển từ điểm M đến điểm B, đi được 12 chu vi đường tròn.

 Trong 5 phút tiếp theo cabin đi chuyển từ điểm B đến điểm M’ tương ứng 16 chu vi đường tròn  hay 13 cung .

Do đó: BOM^=13.180o=60oAOM^=90o60o=30o.

MH=sin30o.OM=12.75=37,5(m).

 Độ cao của người đó là: 37,5 + 90 = 127,5 (m).

Vậy sau 20 phút quay người đó ở độ cao 127,5 m.

 BÀI TẬP

Bài 3.1 trang 37 Toán lớp 10: Không dùng bảng số hay máy tính cầm tay, tính giá trị của các biểu thức sau:

a) (2sin30o+cos135o3tan150o).(cos180ocot60o)

b) sin290o+cos2120o+cos20otan260+cot2135o

c) cos60o.sin30o+cos230o

Lời giải a

a) (2sin30o+cos135o3tan150o).(cos180ocot60o)

Phương pháp giải:

Bước 1: Đưa GTLG của các góc 135o,150o,180o về GTLG của các góc 45o,30o,0o

cos135o=cos45o;cos180o=cos0otan150o=tan30o

Bước 2: Sử dụng bảng giá trị lượng giác của một số góc đặc biệt.

sin30o=12;tan30o=33cos45o=22;cos0o=1;cot60o=33

Lời giải:

Đặt  A=(2sin30o+cos135o3tan150o).(cos180ocot60o)

Ta có: {cos135o=cos45o;cos180o=cos0otan150o=tan30o

A=(2sin30ocos45o+3tan30o).(cos0ocot60o)

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

{sin30o=12;tan30o=33cos45o=22;cos0o=1;cot60o=33

A=(2.1222+3.33).(133)

A=(122+3).(1+33)A=22+232.3+33A=(22+23)(3+3)6A=6+23326+63+66A=12+833266.

Lời giải b

b) sin290o+cos2120o+cos20otan260+cot2135o

Phương pháp giải:

Bước 1: Đưa GTLG của các góc 120o,135o về GTLG của các góc 60o,45o

cos120o=cos60o,cot135o=cot45o

Bước 2: Sử dụng bảng giá trị lượng giác của một số góc đặc biệt.

cos0o=1;cot45o=1;cos60o=12tan60o=3;sin90o=1

Lời giải:

Đặt  B=sin290o+cos2120o+cos20otan260+cot2135o

Ta có: {cos120o=cos60ocot135o=cot45o{cos2120o=cos260ocot2135o=cot245o

B=sin290o+cos260o+cos20otan260+cot245o

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

{cos0o=1;cot45o=1;cos60o=12tan60o=3;sin90o=1

B=12+(12)2+12(3)2+12

B=1+14+13+1=14.

Lời giải c

c) cos60o.sin30o+cos230o

Phương pháp giải:

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt.

sin30o=12;cos30o=32;cos60o=12

Lời giải:

Đặt  C=cos60o.sin30o+cos230o

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

sin30o=12;cos30o=32;cos60o=12

C=12.12+(32)2=14+34=1.

Bài 3.2 trang 37 Toán lớp 10: Đơn giản các biểu thức sau:

Lời giải a

a) sin100o+sin80o+cos16o+cos164o;

Phương pháp giải:

Lời giải:

Ta có:  {sin100o=sin(180o80o)=sin80ocos164o=cos(180o16o)=cos16o

sin100o+sin80o+cos16o+cos164o=sin80o+sin80o+cos16ocos16o=2sin80o.

Lời giải b

b) 2sin(180oα).cotαcos(180oα).tanα.cot(180oα) với 0o<α<90o.

Phương pháp giải:

Bài 3.2 trang 37 Toán lớp 10 Tập 1 I Kết nối tri thức với cuộc sống (ảnh 1)

Lời giải:

Ta có:

{sin(180oα)=sinαcos(180oα)=cosαtan(180oα)=tanαcot(180oα)=cotα(0o<α<90o)2sin(180oα).cotαcos(180oα).tanα.cot(180oα) =2sinα.cotα(cosα).tanα.(cotα)=2sinα.cotαcosα.tanα.cotα

=2sinα.cosαsinαcosα.(tanα.cotα)=2cosαcosα=cosα.

Bài 3.3 trang 37 Toán lớp 10: Chứng minh các hệ thức sau:

a) sin2α+cos2α=1.

b) 1+tan2α=1cos2α(α90o)

c) 1+cot2α=1sin2α(0o<α<180o)

Lời giải a

a) sin2α+cos2α=1.

Phương pháp giải:

Bước 1: Vẽ đường tròn lượng giác, lấy điểm M biểu diễn góc α bất kì.

Bước 2: Xác định sinα,cosα( tương ứng với tung độ và hoành độ của điểm M).

Bước 3: Suy ra đẳng thức cần chứng minh.

Lời giải:

Bài 3.3 trang 37 Toán lớp 10 Tập 1 I Kết nối tri thức với cuộc sống (ảnh 1)

Gọi M(x;y) là điểm trên đường tròn đơn vị sao cho xOM^=α. Gọi N, P tương ứng là hình chiếu vuông góc của M lên các trục Ox, Oy.

Ta có: {x=cosαy=sinα{cos2α=x2sin2α=y2(1)

Mà {|x|=ON|y|=OP=MN{x2=|x|2=ON2y2=|y|2=MN2(2)

Từ (1) và (2) suy ra sin2α+cos2α=ON2+MN2=OM2 (do ΔOMN vuông tại N)

sin2α+cos2α=1 (vì OM =1). (đpcm)

Lời giải b

b) 1+tan2α=1cos2α(α90o)

Phương pháp giải:

Bước 1: Viết tanα dưới dạng sinαcosα(α90o), thay vào vế trái.

Bước 2: Biến đổi vế trái bằng cách quy đồng, kết hợp với ý a) để suy ra vế phải.

Lời giải:

Ta có:  tanα=sinαcosα(α90o)

1+tan2α=1+sin2αcos2α=cos2αcos2α+sin2αcos2α=sin2α+cos2αcos2α

Mà theo ý a) ta có sin2α+cos2α=1 với mọi góc α

1+tan2α=1cos2α (đpcm)

Lời giải c

c) 1+cot2α=1sin2α(0o<α<180o)

Phương pháp giải:

Bước 1: Viết cotα dưới dạng cosαsinα, thay vào vế trái.

Bước 2: Biến đổi vế trái bằng cách quy đồng, kết hợp với ý a) để suy ra vế phải.

Lời giải:

Ta có:  cotα=cosαsinα(0o<α<180o)

1+cot2α=1+cos2αsin2α=sin2αsin2α+cos2αsin2α=sin2α+cos2αsin2α

Mà theo ý a) ta có sin2α+cos2α=1 với mọi góc α

1+cot2α=1sin2α (đpcm)

Bài 3.4 trang 37 Toán lớp 10: Cho góc α(0o<α<180o) thỏa mãn tanα=3

Tính giá trị biểu thức: P=2sinα3cosα3sinα+2cosα

Phương pháp giải:

Chia cả tử và mẫu của P cho cosα.

Lời giải:

Vì  tanα=3 nên cosα0

P=2sinα3cosαcosα3sinα+2cosαcosα=2sinαcosα33sinαcosα+2P=2tanα33tanα+2=2.333.3+2=311.

Cách 2: 

Ta có: 1+tan2α=1cos2α(α90o)

1cos2α=1+32=10

cos2α=110cosα=±1010

Vì 0o<α<180o nên sinα>0.

Mà tanα=3>0cosα>0cosα=1010

Lại có: sinα=cosα.tanα=1010.3=31010.

P=2.310103.10103.31010+2.1010=1010(2.33)1010(3.3+2)=311.

Đánh giá

0

0 đánh giá