Toptailieu.vn giới thiệu Giải bài tập Toán lớp 10 Bài 3: Các số liệu đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm sách Cánh diều giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 10 Tập 2. Mời các bạn đón xem:
Toán 10 Cánh Diều Bài 3: Các số liệu đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm
Kết quả làm bài kiểm tra môn Toán của bạn nào đồng đều hơn?
Lời giải:
Sau bài học này, ta giải quyết được bài toán trên như sau:
Số trung bình cộng điểm kiểm tra của bạn Dũng là:
Phương sai mẫu số liệu điểm kiểm tra của bạn Dũng là:
Số trung bình cộng điểm kiểm tra của bạn Huy là:
Phương sai mẫu số liệu điểm kiểm tra của bạn Huy là:
Vì 0,4 < 2 nên nên bạn Huy có kết quả kiểm tra môn Toán đồng đều hơn bạn Dũng.
1. Khoảng biến thiên. Khoảng tứ phân nhị
Hoạt động 1 trang 35 Toán lớp 10 Tập 2: Kết quả của 11 lần đo được thống kê trong mẫu số liệu sau:
2 5 16 8 7 9 10 12 14 11 6 (1)
a) Tìm hiệu giữa số đo lớn nhất và số đo nhỏ nhất.
b) Sắp xếp các số liệu của mẫu (1) theo thứ tự tăng dần. Tìm các giá trị Q1, Q2, Q3 là tứ phân vị của mẫu đó. Sau đó, tìm hiệu Q3 – Q1.
Lời giải:
a, Số đo lớn nhất là 16. số đo nhỏ nhất là 2
Hiệu giữa số đo lớn nhất và số đo nhỏ nhất là 16 - 2 = 14
b, Sắp xếp các số liệu của mẫu (1) theo thứ tự tăng dần ta đước:
2 5 6 7 8 9 10 11 12 14 16
Trung vị mẫu (1) là Q2 = 9
Trung vị của dãy 2 5 6 7 8 là Q1 = 6
Trung vị của dãy 10 11 12 14 16 là Q3 = 12
Vậy Q1 = 6, Q2 = 9, Q3 = 12
Do đó, hiệu Q3 - Q1 = 12 - 6 = 6
2. Phương sai
8 6 7 5 9 (3) (xem Bảng 4)
Số trung bình cộng của mẫu số liệu (3) là:
a) Tính các độ lệch sau: (8 – 7); (6 – 7); (7 – 7); (5 – 7); (9 – 7).
b) Tính bình phương các độ lệch và tính trung bình cộng của chúng.
Lời giải:
a) Ta tính được các độ lệch là: (8 – 7) = 1; (6 – 7) = – 1; (7 – 7) = 0; (5 – 7) = – 2; (9 – 7) = 2.
b) Bình phương các độ lệch là: (8 – 7)2 = 12 = 1; (6 – 7)2 = (– 1)2 = 1; (7 – 7)2 = 02 = 0; (5 – 7) = (– 2)2 = 4; (9 – 7)2 = 22 = 4.
Trung bình cộng của bình phương các độ lệch là:
55,2 58,8 62,4 54 59,4 (5)
Mẫu số liệu về thời gian (đơn vị: giây) chạy cự li 1 500m của 5 người đó là:
271,2 261 276 282 270 (6)
Tính phương sai của mẫu (5) và mẫu (6). Từ đó cho biết cự li chạy nào có kết quả đồng đều hơn.
Lời giải:
Số trung bình cộng của mẫu số liệu (5) là:
Phương sai của mẫu số liệu (5) là:
= 9,1584.
Số trung bình cộng của mẫu số liệu (6) là:
Phương sai của mẫu số liệu (6) là:
[(271,2 − 272,04)2+ (261 − 272,04)2+ (276 − 272,04)2+ (282 − 272,04)2+ (270 − 272,04)2] = 48,3264.
Vì 9,1584 < 48,3264 nên .
Vậy cự li chạy 500 m có kết quả đồng đều hơn.
3. Độ lệch chuẩn
Hoạt động 3 trang 39 Toán lớp 10 Tập 2: Trong Ví dụ 2, phương sai của mẫu số liệu (4) là Tính
Lời giải:
Ta có:
Luyện tập 2 trang 39 Toán lớp 10 Tập 2: Mẫu số liệu về số lượng áo bán ra lần lượt từ tháng 1 đến tháng 12 của một doanh nghiệp là:
430 560 450 550 760 430 525 410 635 450 800 900
Tính độ lệch chuẩn của mẫu số liệu đó.
Lời giải:
Số trung bình cộng của mẫu số liệu trên là:
.
Phương sai của mẫu số liệu trên là:
[(430 − 575)2 + (560 − 575)2 + (450 − 575)2 + (550 − 575)2 + (760 – 575)2 + (430 − 575)2 + (525 – 575)2 + (410 − 575)2 + (635 − 575)2 + (450 − 575)2 + (800 − 575)2 + (900 – 575)2] ≈ 24829,17.
Vậy độ lệch chuẩn của mẫu số liệu trên là: s = .
Bài tập
a) Kết quả trung bình của hai bạn có bằng nhau hay không?
b) Tính phương sai của mẫu số liệu thống kê kết quả 5 lần nhảy xa của mỗi bạn. Từ đó cho biết bạn nào có kết quả nhảy xa ổn định hơn.
Lời giải:
a) Kết quả trung bình của Hùng là:
.
Kết quả trung bình của Trung là:
.
Vậy kết quả trung bình của hai bạn có bằng nhau.
b) Phương sai mẫu số liệu kết quả nhảy xa của bạn Hùng là:
.
Phương sai mẫu số liệu kết quả nhảy xa của bạn Trung là:
.
Vì 0,04 < 0,08 nên .
Vậy bạn Trung có kết quả nhảy xa ổn định hơn.
Bài 2 trang 41 Toán lớp 10 Tập 2: Biểu đồ đoạn thẳng ở Hình 3 biểu diễn tốc độ tăng trưởng GDP của Việt Nam giai đoạn 2012 – 2019.
a) Viết mẫu số liệu thống kê tốc độ tăng trưởng GDP nhận được từ biểu đồ ở Hình 3.
b) Tìm khoảng biến thiên của mẫu số liệu đó.
c) Tìm khoảng tứ phân vị của mẫu số liệu đó.
d) Tính phương sai và độ lệch chuẩn của mẫu số liệu đó.
Lời giải:
Bài 3 trang 41 Toán lớp 10 Tập 2: Biểu đồ đoạn thẳng ở Hình 4 biểu diễn giá vàng bán ra trong bảy ngày đầu tiên của tháng 6 năm 2021.
a) Viết mẫu số liệu thống kê giá vàng bán ra nhận được từ biểu đồ ở Hình 4.
b) Tìm khoảng biến thiên của mẫu số liệu đó.
c) Tìm khoảng tứ phân vị của mẫu số liệu đó.
d) Tính phương sai và độ lệch chuẩn của mẫu số liệu đó.
Lời giải:
Bài 4 trang 41 Toán lớp 10 Tập 2: Để biết cây đậu phát triển như thế nào sau khi gieo hạt, bạn Châu gieo 5 hạt đậu vào 5 chậu riêng biệt và cung cấp cho chúng lượng nước, ánh sáng như nhau. Sau hai tuần, 5 hạt đậu đã nảy mầm và phát triển thành 5 cây con. Bạn Châu đo chiều cao từ rễ đến ngọn của mỗi cây (đơn vị: mi-li-mét) và ghi kết quả là mẫu số liệu sau:
112 102 106 94 101
a) Tính phương sai và độ lệch chuẩn của mẫu số liệu trên.
b) Theo em, các cây có phát triển đồng đều hay không?
Lời giải:
a) Số trung bình cộng của mẫu số liệu đã cho là:
.
Phương sai của mẫu số liệu trên là:
.
Độ lệch chuẩn của mẫu số liệu là:
s = .
b) Vì độ lệch chuẩn của mẫu số liệu là khoảng 5,93, số này khá lớn, chính vì vậy các cây phát triển không đồng đều.
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.