Năm ngoái, người ta có thể mua ba mẫu xe ôtô của ba hãng X, Y, Z

623

Với giải HĐ1 trang 6 Chuyên đề Toán 10 Kết nối tri thức chi tiết trong Bài 1: Hệ phương trình bậc nhất ba ẩn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 10. Mời các bạn đón xem:

Giải bài tập Chuyên đề Toán lớp 10 Bài 1: Hệ phương trình bậc nhất ba ẩn

Bài 1.5 trang 14 Chuyên đề Toán 10: Năm ngoái, người ta có thể mua ba mẫu xe ôtô của ba hãng X, Y, Z với tổng số tiền là 2,8 tỉ đồng. Năm nay, do lạm phát, để mua ba chiếc xe đó cần 3,018 tỉ đồng. Giá xe ôtô của hãng X tăng 8%, của hãng Y tăng 5% và của hãng Z tăng 12%. Nếu trong năm ngoái giá chiếc xe của hãng Y thấp hơn 200 triệu đồng so với giá chiếc xe của hãng X thì giá của mỗi chiếc xe trong năm ngoái là bao nhiêu?

Lời giải:

Gọi giá của mỗi chiếc xe hãng X, Y, Z trong năm ngoái lần lượt là x, y, z (tỉ đồng).

Theo đề bài, ta có:

– Năm ngoái, người ta có thể mua ba mẫu xe ôtô của ba hãng X, Y, Z với tổng số tiền là 2,8 tỉ đồng, suy ra x + y + z =2,8 (1).

– Năm nay, do lạm phát, để mua ba chiếc xe đó cần 3,018 tỉ đồng, suy ra 108%x + 105%y + 112%z = 3,018 hay 108x + 105y + 112z = 301,8 (2).

– Trong năm ngoái giá chiếc xe của hãng Y thấp hơn 200 triệu đồng so với giá chiếc xe của hãng X, suy ra x – y = 0,2 (3).

Từ (1), (2) và (3) ta có hệ phương trình: 

 

Giải hệ này ta được x = 1,2; y = 1; z = 0,6.

Vậy giá của mỗi chiếc xe hãng X, Y, Z trong năm ngoái lần lượt là 1,2; 1 và 0,6 tỉ đồng.

 

Xem thêm các bài giải Chuyên đề Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

 

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá