Chứng minh rằng với mọi số tự nhiên n lớn hơn bằng 2, ta có 5^n

569

Với giải Bài 2.22 trang 38 Chuyên đề Toán 10 Kết nối tri thức chi tiết trong Bài tập cuối chuyên đề 2 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 10. Mời các bạn đón xem:

Giải bài tập Chuyên đề Toán lớp 10 Bài tập cuối chuyên đề 2

Bài 2.22 trang 38 Chuyên đề Toán 10: Chứng minh rằng với mọi số tự nhiên n ≥ 2, ta có 5n ≥ 3n + 4n.

Lời giải:

Ta chứng minh bằng quy nạp theo n.

Bước 1. Với n = 2 ta có 52 = 25 = 32 + 42.                                                

Như vậy khẳng định đúng cho trường hợp n = 2.

Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có: 5k ≥ 3k + 4k.

Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: 5k + 1 ≥ 3k + 1 + 4k + 1.

Thật vậy, sử dụng giả thiết quy nạp ta có:

5k + 1 = 5.5k ≥ 5(3k + 4k) = 5. 3k + 5.4k ≥ 3. 3k + 4.4k = 3k + 1 + 4k + 1.

Vậy khẳng định đúng với mọi số tự nhiên n.

 

Xem thêm lời giải bài tập Chuyên đề học tập Toán 10 Kết nối tri thức hay, chi tiết khác:

 

 

 

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá